Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(8): 247, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904858

RESUMEN

Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.


Asunto(s)
Bacterias , Biodegradación Ambiental , Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Isomerismo , Plastificantes/metabolismo , Contaminantes Ambientales/metabolismo , Redes y Vías Metabólicas , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química
2.
Biodegradation ; 34(1): 21-41, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369603

RESUMEN

The ability of Pseudomonas turukhanskensis GEEL-01 to degrade the phenanthrene (PHE) was optimized by response surface methodology (RSM). Three factors as independent variables (including temperature, pH, and inoculum) were studied at 600 mg/L PHE where the highest growth of P. turukhanskensis GEEL-01 was observed. The optimum operating conditions were evaluated through the fit summary analysis, model summary statistics, fit statistics, ANOVA analysis, and model graphs. The degradation of PHE was monitored by high-performance liquid chromatography (HPLC) and the metabolites were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that the correlation among independent variables with experimental and predicted responses was significant (p < 0.0001). The optimal temperature, pH, and inoculum were 30 ℃, 8, and 6 mL respectively. The HPLC peaks exhibited a reduction in PHE concentration from 600 mg/L to 4.97 mg/L with 99% degradation efficiency. The GC-MS peaks indicated that the major end products of PHE degradation were 1-Hydroxy-2-naphthoic acid, salicylic acid, phthalic acid, and catechol. This study demonstrated that the optimized parameters by RSM for P. turukhanskensis GEEL-01 could degrade PHE by phthalic and salicylic acid pathways.


Asunto(s)
Fenantrenos , Fenantrenos/metabolismo , Biodegradación Ambiental , Pseudomonas/metabolismo
3.
Waste Manag Res ; 41(1): 173-181, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35722891

RESUMEN

Much heat is released in aerobic landfills, which leads to temperature change. Quantitative prediction of temperature change with time and space is essential for the safe aerobic operation of landfill. In this article, based on the theory of porous media seepage mechanics and heat transfer, a seepage-temperature coupling model considering aeration, recirculation and degradation was established, which included internal energy change, heat conduction, convection and heat transfer. Moreover, combined with the long-time on-site monitoring temperature data from Wuhan Jinkou Landfill, the model's reliability was preliminarily verified. Sensitivity analysis was carried out for aeration intensity, aeration temperature, recirculation intensity and recirculation temperature. Among the four factors, recirculation intensity influences the peak temperature most with a decrease of 20.11%. Compared with Borglin's and Hao's models, it is found that waste should not be assumed as a cell for temperature prediction. By comparing the results of Non-linear Ascent Stage model, Linear Ascent Stage model and Absent Ascent Stage model, it showed that the temperature difference of the three models decreases with the increase of operation time. In addition, the time point of peak temperature, t0, affects the temperature distribution. The above results provide a reference for predicting the spatial and temporal distribution of temperature and regulations for long-term aerobic landfill operations.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Eliminación de Residuos/métodos , Temperatura , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Reactores Biológicos
4.
Environ Res ; 212(Pt B): 113288, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35427588

RESUMEN

An upsurge in textile dye pollution has demanded immediate efforts to develop an optimum technology for their bioremediation. However, the molecular mechanism underpinning aerobic decolorization of dyes is still in its infancy. Thus, in the current work, the intricacies of aerobic remediation of textile dyes by Pseudomonas aeruginosa D6 were understood via a transcriptomic approach. The bacterium isolated from the sludge sample of a common effluent treatment plant was able to decolorize 54.42, 57.66, 50.84 and 65.86% of 100 mg L-1 of four different dyes i.e., TD01, TD04, TD05, and TD06, respectively. The maximum decolorization was achieved within six days and thus, the first and sixth day of incubation were selected for transcriptome analysis at the early and late phase of the decolorization, respectively. The expression profiles of all samples were compared to gain insight into the dye-specific response of bacterium and it was found that it behaved most uniquely in the presence of the dye TD01. Several genes critical to core metabolic processes like the TCA cycle, glycolysis, pentose phosphate pathway, translation, cell motility etc. Were found to be overexpressed in the presence of dyes. Interestingly, in response to dyes, the benzoate degradation pathway was significantly upregulated in the bacterium as compared to control (i.e., bacterium without dye). Thus, seven genes contributing to the induction of the same were further studied by RT-qPCR analysis. Overall, the involvement of the benzoate pathway implies the appearance of aromatic intermediates during decolorization, which in turn infers dye degradation.


Asunto(s)
Pseudomonas aeruginosa , Industria Textil , Compuestos Azo , Benzoatos , Biodegradación Ambiental , Colorantes/análisis , Perfilación de la Expresión Génica , Pseudomonas aeruginosa/genética , Textiles , Regulación hacia Arriba
5.
J Environ Manage ; 307: 114536, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066201

RESUMEN

Coffee pulp (CP) and wastewater, from wet coffee processing plants, pollute water and soil ecosystems unless a greener management system is employed. The aim was to evaluate the effect of hydrolyzed human urine (HU) on the dynamics of total phenol, caffeine, and heavy metals during CP and coffee processing wastewater (CPWW) co-composting. The associated health risks reduction after application for cabbage production was also estimated. For the purpose, five treatments were prepared as C0 (CP, control), C1 (CP + CPWW), C2 (CP + 1:1 CPWW:HU), C3 (CP + 1:2 CPWW:HU) and C4 (CP + 1:3 CPWW:HU). The optimum compost was applied for cabbage cultivation in comparison with mineral fertilizer and without fertilization in a greenhouse. The total phenol reduction was in the order of C1 (77.71%) < C0 (78.66%) < C4 (79.89%) < C3 (91.20%) < C2 (91.48%), and maximum significant reduction of caffeine was also observed in C3 (81.34%) and C2 (82.66%). Pb and Cd were significantly reduced in C2, and Cr in C3 with a reduction of 4.38-15.13%, 12.50-33.00%, and 2.94-19.57%, respectively. The bio-concentration factor decreased in the order of Cd > Cr > Ni > Pb with concentrations, hazard quotient, hazard index (along with phenol) < 1, and cancer risk values below 1.00E-04, indicating very little risk. Thus, supplementing HU enhanced degradation of the anti-nutrient factors, and provide compost that enrich soil nutrients with little health risks of application.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Café , Ecosistema , Humanos , Metales Pesados/análisis , Medición de Riesgo , Conducta de Reducción del Riesgo , Suelo , Contaminantes del Suelo/análisis
6.
Adv Appl Microbiol ; 112: 1-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32762865

RESUMEN

As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.


Asunto(s)
Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrocarburos Aromáticos/metabolismo , Redes y Vías Metabólicas/fisiología , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Evolución Biológica , Carbono/metabolismo , Compartimento Celular , Quimiotaxis , Variación Genética , Hidrocarburos Aromáticos/química , Redes y Vías Metabólicas/genética , Tensoactivos/metabolismo
7.
World J Microbiol Biotechnol ; 32(5): 81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27038951

RESUMEN

The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and ß-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and ß-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and ß-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and ß-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers.


Asunto(s)
Hexaclorociclohexano/química , Hexaclorociclohexano/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Streptomyces/metabolismo , Anaerobiosis , Biodegradación Ambiental , Insecticidas/química , Insecticidas/metabolismo , Isomerismo
8.
Ecotoxicol Environ Saf ; 104: 220-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24726932

RESUMEN

The effect of concurrent degradation of tetrabromobisphenol A (TBBPA) by the strain Ochrobactrum sp. T under aerobic condition was investigated. The results demonstrated that four extra energy source-addition systems still followed pseudo-first order kinetics. The addition of ethanol or glucose could promote the biodegradation ability of Ochrobactrum sp. T to TBBPA, and 90.1 percent and 77.5 percent of TBBPA (5mg L(-1)) could be removed with corresponding TBBPA half-lives of 26 and 36h, respectively, after 96h reaction. Comparatively, the degradation efficiency of the sole TBBPA system was only 72.9 percent under the same condition. In contrast, two other co-substrates 2,4,6-tribromophenol (TBP) and bisphenol A (BPA) showed a negative effect on the TBBPA biodegradation, and the degradation efficiencies of TBBPA were achieved as 44.7 percent and 67.4 percent, respectively. For the TBBPA+TBP system, the competitive inhibition for the TBBPA debromination was less than the inhibition of the toxicity to the bacterium. While for the TBBPA+BPA system, the degradation of TBBPA could be promoted at the beginning of the reaction, and was then inhibited slightly with further prolonging of reaction time. This is probably due to the substrates being oxidized, and BPA can consume partial oxygen and provide the electrons during the concurrent biodegradation process. In addition, although higher estrogenic activity could be detected for the debrominated intermediates in TBBPA co-degradation process than the original TBBPA, the estrogenicity of the whole system still decreased finally after 96h degradation.


Asunto(s)
Ochrobactrum/metabolismo , Bifenilos Polibrominados/metabolismo , Aerobiosis , Compuestos de Bencidrilo/química , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Estrógenos/química , Fenoles/química
9.
J Environ Manage ; 136: 132-8, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24607802

RESUMEN

The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash.


Asunto(s)
Aire/análisis , Humedad , Residuos Industriales , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Reactores Biológicos , Concentración de Iones de Hidrógeno , Temperatura , Aguas Residuales/química , Aguas Residuales/microbiología
10.
Front Microbiol ; 15: 1389954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659987

RESUMEN

The complexity of crude oil composition, combined with the fluctuating oxygen level in contaminated environments, poses challenges for the bioremediation of oil pollutants, because of compound-specific microbial degradation of petroleum hydrocarbons under certain conditions. As a result, facultative bacteria capable of breaking down petroleum hydrocarbons under both aerobic and anaerobic conditions are presumably effective, however, this hypothesis has not been directly tested. In the current investigation, Shewanella putrefaciens CN32, a facultative anaerobic bacterium, was used to degrade petroleum hydrocarbons aerobically (using O2 as an electron acceptor) and anaerobically (using Fe(III) as an electron acceptor). Under aerobic conditions, CN32 degraded more saturates (65.65 ± 0.01%) than aromatics (43.86 ± 0.03%), with the following order of degradation: dibenzofurans > n-alkanes > biphenyls > fluorenes > naphthalenes > alkylcyclohexanes > dibenzothiophenes > phenanthrenes. In contrast, under anaerobic conditions, CN32 exhibited a higher degradation of aromatics (53.94 ± 0.02%) than saturates (23.36 ± 0.01%), with the following order of degradation: dibenzofurans > fluorenes > biphenyls > naphthalenes > dibenzothiophenes > phenanthrenes > n-alkanes > alkylcyclohexanes. The upregulation of 4-hydroxy-3-polyprenylbenzoate decarboxylase (ubiD), which plays a crucial role in breaking down resistant aromatic compounds, was correlated with the anaerobic degradation of aromatics. At the molecular level, CN32 exhibited a higher efficiency in degrading n-alkanes with low and high carbon numbers relative to those with medium carbon chain lengths. In addition, the degradation of polycyclic aromatic hydrocarbons (PAHs) under both aerobic and anaerobic conditions became increasingly difficult with increased numbers of benzene rings and methyl groups. This study offers a potential solution for the development of targeted remediation of pollutants under oscillating redox conditions.

11.
Sci Total Environ ; 953: 176039, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39241870

RESUMEN

Domoic acid (DA) is a compound generated as a secondary metabolite during harmful algal blooms, has historically received attention as the potent neurotoxicity in marine environment. However, the aerobic degradation mechanism of DA and the DA-degrader remain largely unknown. Here, we revealed the mechanism of aerobic degradation of DA by a ubiquitous marine Pseudoalteromonas sp., and more importantly, we confirmed that the degradation of DA is mediated by biogenic reactive oxygen species (ROS), rather than direct enzyme-mediated as traditionally conceived. Results indicated that DA degradation was caused by biogenic O2- and OH, where DA underwent reactions of decarboxylation, hydroxylation, and oxidation to yield the detoxification terminal product. Besides, whole genome sequencing and RT-qPCR analysis revealed that the genes conferring to encoding leucine dehydrogenase (ldh) and Na+-translocated NADH-quinone oxidoreductase (nqrA, nqrF) are responsible for biogenic ROS production. Finally, we found through comparative proteomic analysis that biogenic ROS mediated the DA degradation may be prevalent in the environment. Overall, this work not only reveals aerobic biotransformation mechanism of DA, but also identifies a novel mechanism of DA degradation, which provides new perspective into the environmental fate of DA and the artificial bioremediation of DA.


Asunto(s)
Ácido Kaínico , Toxinas Marinas , Especies Reactivas de Oxígeno , Toxinas Marinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo , Biodegradación Ambiental , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Contaminantes Químicos del Agua/metabolismo
12.
Chemosphere ; 362: 142648, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906189

RESUMEN

Four different end-of-life options for disposable bioplastic cups were investigated and compared based on their environmental implications. Two products with distinct polymeric composition were tested simulating the following scenarios at laboratory scale: i) industrial composting (180 days at 58 °C); ii) anaerobic digestion followed by industrial composting (45 days at 55 °C and 180 days at 58 °C); iii) anaerobic digestion followed by direct digestate use on soil for agricultural purposes (45 days at 55 °C and 180 days at 25 °C); iv) uncontrolled release into a soil environment (180 days at 25 °C). Ecotoxicity tests were run at the end of each experiment to investigate the effects of the materials on three main groups of terrestrial model organisms: plants, earthworms and nitrifying bacteria. Complete biodegradation of the cups was observed in 180 days in the scenarios involving composting environment. A low degree of biodegradation (22.9 ± 4.5%) of the digestates in soil was observed, warning for a potential micro-bioplastics discharge into the environment. No degradation was observed for the cups in soil during the same testing period. Ecotoxicity tests revealed a negative effect on plants biomass growth across all samples, which was 17-30% lower compared to the blank sample. The experimental campaign highlighted the need for a systematic assessment of controlled treatment of bioplastics, as well as the need for a harmonized legislative framework.


Asunto(s)
Biodegradación Ambiental , Compostaje , Oligoquetos , Contaminantes del Suelo , Suelo , Oligoquetos/efectos de los fármacos , Suelo/química , Animales , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Plásticos Biodegradables/química , Plásticos Biodegradables/toxicidad , Plantas/efectos de los fármacos , Ecotoxicología
13.
Environ Sci Pollut Res Int ; 30(31): 77063-77076, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37249770

RESUMEN

As industrial waste from aluminum production, red mud (RM) poses a severe threat to the local environment that needs to be appropriately utilized. The activation of iron oxide, which is abundant in RM, improves its effectiveness as a catalytic material for the degradation of organic pollutants. This study developed a novel activation approach by adding dithionite citrate bicarbonate (DCB) for Bisphenol A (BPA) degradation under aeration conditions. Electrochemical experiments and reactive oxygen species (ROSs) trapping experiments showed that DCB treatment enhanced the redox cycle of Fe(II)/Fe(III), which promoted free radical generation. The optimized condition for the RM activation was achieved at 21 mmol/L dithionites, 84 mmol/L citrates, and 34 mmol/L bicarbonate, and the degradation of BPA by activated RM reached 410 µg BPA per gram of RM. This work provided a feasible way to utilize RM resources as an efficient, low-cost catalyst for organic pollutants treatment.


Asunto(s)
Contaminantes Ambientales , Compuestos Férricos , Bicarbonatos , Compuestos de Bencidrilo , Citratos , Ácido Cítrico
14.
J Hazard Mater ; 440: 129777, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007361

RESUMEN

The excessive use of herbicides had caused serious environmental pollution and ecological problems. Therefore, it is imperative to explore an effective method to reduce herbicide residues and pollution. In the present study, we used superabsorbent hydrogels coated 14C-acetochlor (SH-ACE) to investigate its behavior in different soils under oxic conditions. After 100 days, the mineralization by SH-ACE was increased by 2.3%, 2.5% and 3.3% in the red clay soils, fluvio-marine yellow loamy soils and coastal saline soils, respectively, compared to the control group. This result indicated that the SH-ACE treatment resulted in more complete degradation and detoxification of acetochlor. In addition, the dissipation rates of acetochlor were significantly faster in the SH-ACE treatment, which reduced the persistence of acetochlor. The probable degradation pathways of acetochlor involved dechlorination, hydroxylation, deethoxymethylation, and the formation of thioacetic acid derivatives in the two treatments, but the contents of transformation products were completely different. These findings suggest that the SH-ACE treatment has a significant effect to accelerate the degradation of acetochlor. When developing green pesticides, we emphasize that superabsorbent hydrogel coating treatment should be considered as a promising method for ecological safety in the environment.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Arcilla , Herbicidas/metabolismo , Hidrogeles , Suelo , Contaminantes del Suelo/metabolismo , Toluidinas/análisis , Toluidinas/química , Toluidinas/metabolismo
15.
Microorganisms ; 10(7)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35889160

RESUMEN

Decabromodiphenyl ether (BDE-209), a polybrominated diphenyl ether (PBDE) homolog, seriously threatens human health. In this study, a Rhodococcus ruber strain with high BDE-209 degradation activity, named TAW-CT127, was isolated from Tong'an Bay, Xiamen. Under laboratory conditions, the strain's optimal growth temperature, pH, and salinity are 45 °C, 7.0, and 0-2.5%, respectively. Scanning electron microscopy (SEM) analysis shows that TAW-CT127 is damaged when grown in manual marine culture (MMC) medium with BDE-209 as the sole carbon source instead of eutrophic conditions. In the dark, under the conditions of 28 °C, 160 rpm, and 3 g/L (wet weight) TAW-CT127, the degradation rate of 50 mg/L BDE-209 is 81.07%. The intermediate metabolites are hexabromo-, octabromo-, and nonabromo-diphenyl ethers. Through whole-genome sequencing, multiple dehalogenases were found in the genome of TAW-CT127; these may be involved in the production of lower-brominated diphenyl ethers. Additionally, biphenyl-2,3-dioxygenase (BDO) in TAW-CT127 may catalyze the debromination reaction of BDE-209. Our research provides a new high-efficiency strain for bioremediation of BDE-209 pollution, and lays the foundation for the preliminary exploration of genes associated with BDE-209 degradation.

16.
Chemosphere ; 307(Pt 1): 135609, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35809750

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent organic pollutants in soil, which have carcinogenic, teratogenic and mutagenic hazards. The effects of rhamnolipid (RL), nano zero-valent iron (nZVI), and anthraquinone-2,6-disulfonic acid (AQDS) on the degradation of PAHs in soil were studied. It was found that the treatment of 5 mg·kg-1RL + 1% nZVI +0.2 mmol·kg-1AQDS had the highest degradation rate. The degradation rate of total PAHs and HMW-PAHs was 72.81% and 79.47% respectively after 90 days. High-throughput sequencing showed that in RL + nZVI + AQDS enhanced soil, Clostridium, Geobacter, Anaeromyxobacter and Sphingomonas were the dominant species for anaerobic degradation of PAHs. Rhodococcus, Nocardioides, and Microvirga are the dominant species for aerobic degradation of PAHs. The activities of methyltransferase, dehydrogenase and catechol 1,2-dioxygenase in the anaerobic-aerobic degradation process of PAHs were consistent with the degradation process of PAHs, indicating the role of these enzymes in the degradation of PAHs. RL, nZVI, and AQDS combined enhanced microbial anaerobic-aerobic degradation has great application potential in remediation of PAHs-contaminated soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Anaerobiosis , Antraquinonas , Catecol 1,2-Dioxigenasa/metabolismo , Glucolípidos , Hierro , Metiltransferasas/metabolismo , Contaminantes Orgánicos Persistentes , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Contaminantes del Suelo/análisis
17.
Waste Manag ; 144: 144-152, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364520

RESUMEN

Ventilating solid waste landfills with an oxygen supply can effectively accelerate the degradation of waste, achieve rapid stabilization, and realize the sustainable utilization of landfills. Aiming to understand and verify the aerobic degradation process in landfills, this paper proposed a biochemical-thermal-hydro-mechanical coupling model. The model considers aerobic biochemical reactions, dissolved solute migration, heat transport, two-phase flow, and skeleton deformation. The model was verified by comparison with an in-situ experiment at Jinkou landfill. The results showed the model could accurately represent the observed degradation phenomena during the experiment. The modelling results indicated that the rate of temperature increase and peak temperature of the upper layer, which were lower than those of the middle layer, were affected by heat exchange at the landfill surface. The lowest temperatures occurred near the bottom because of high water content and low oxygen concentrations. The high temperature zone migrated out from the injection well during degradation, reflecting the degradation of degradable organic matter associated with oxygen diffusion rates and aerobic degradation reactions. The initial accumulated settlement value was fast, but slowed and finally stabilized. The surface subsidence also developed from the center around the injection well to the surrounding area, and 70% of the total subsidence occurred within 150 days. This newly developed model provides a theoretical framework for analyzing the multi-field coupling of aerobic degradation of landfilled municipal solid waste (MSW).


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Oxígeno , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
18.
Water Res ; 190: 116694, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33316663

RESUMEN

Peracetic acid (PAA) has been widely used as a disinfectant in many industries; its use in poultry processing is steadily increasing. However, information related to the potential inhibitory effect of PAA solutions (PAA and H2O2) on biological wastewater treatment processes used by the poultry processing industry is extremely limited. The work reported here assessed the long-term effect of PAA solution on aerobic degradation and nitrification in three bioreactors fed with poultry processing wastewater by quantifying the extent of COD removal and nitrification rates. Changes in culture viability, intracellular reactive oxygen species (ROS), and microbial community structure were also evaluated. COD removal and nitrification were not affected by H2O2 and PAA solutions added to the wastewater before feeding (indirect addition). However, both processes were significantly affected by high levels of H2O2 (i.e., 27 mg/L) and PAA solution (i.e., 60/8.4 mg/L PAA/H2O2) directly added to the reactors. Directly added PAA/H2O2 at 40/5.6 mg/L was the lowest dose resulting in nitrification inhibition. Fast recovery of COD removal and nitrification was observed when direct addition of H2O2 and PAA solution ended. Cell viability measurements revealed that the negative impact on nitrification was predominantly attributed to enzyme inhibition rather than to loss of cell viability. The impact on nitrification was not related to intracellular ROS levels. Microbiome analysis showed major shifts in community composition during the long-term addition of H2O2 and even more with PAA addition. No significant time-trend change in the relative abundance of ammonia-oxidizing bacteria or nitrite-oxidizing bacteria was observed, further supporting the conclusion that the negative impact on nitrification was attributed mainly to enzyme inhibition.


Asunto(s)
Microbiota , Nitrificación , Amoníaco , Reactores Biológicos , Peróxido de Hidrógeno , Nitrógeno , Ácido Peracético , Aguas Residuales
19.
Artículo en Inglés | MEDLINE | ID: mdl-34204975

RESUMEN

Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.


Asunto(s)
Biocombustibles , Lignina , Bacterias , Biomasa
20.
Sci Total Environ ; 760: 143385, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33243516

RESUMEN

The degradation by bacteria has been considered the main process for eliminating nonhalogenated organophosphate esters (OPEs) from wastewater treatment plants (WWTPs), but limited research has reported the biodegradation processes and clarified the microbial-mediated mechanisms for nonhalogenated OPE degradation in WWTPs. The aim of this study was to monitor the biodegradation of the most common nonhalogenated OPEs, namely, tris(2-butoxyethyl) phosphate (TBOEP), tris (n-butyl) phosphate (TNBP) and trisphenyl phosphate (TPHP), under aerobic conditions by sludge cultures from a conventional sewage plant. The microbial cultures were enriched separately with each OPE from activated sludge cultures, and the presence of glucose significantly enhanced degradation of the OPEs during the enrichment. The removal ratios for the three OPEs reached 29.3-89.9% after 5 cycles (25 days) of cultivation, and the first-order degradation kinetics followed the order of TPHP > TBOEP > TNBP, with their half-lives ranging between 12.8 and 99.0 h. Pathways of hydrolysis, hydroxylation, methoxylation, and substitution were confirmed for the aerobic biodegradation of these nonhalogenated OPEs, but only di-alkyl phosphates (DAPs) largely accumulated in culture medium as the most predominant transformation products. Phylotypes in Klebsiella were significantly more abundant during OPE biodegradation than in the initial sludge, which indicated that these microorganisms are associated with the biodegradation of nonhalogenated OPEs in sludge culture. Biodegradation of all investigated nonhalogenated OPEs was associated with a significant reduction in the residual toxicity to Vibrio fischeri, indicating a rather positive ecotoxicological outcome of the aerobic biotransformation processes achieved by the enriched sludge culture.


Asunto(s)
Retardadores de Llama , Aguas del Alcantarillado , Bacterias , Monitoreo del Ambiente , Ésteres , Retardadores de Llama/análisis , Cinética , Organofosfatos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA