Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2300453120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252960

RESUMEN

MuSK is a receptor tyrosine kinase (RTK) that plays essential roles in the formation and maintenance of the neuromuscular junction. Distinct from most members of RTK family, MuSK activation requires not only its cognate ligand agrin but also its coreceptors LRP4. However, how agrin and LRP4 coactivate MuSK remains unclear. Here, we report the cryo-EM structure of the extracellular ternary complex of agrin/LRP4/MuSK in a stoichiometry of 1:1:1. This structure reveals that arc-shaped LRP4 simultaneously recruits both agrin and MuSK to its central cavity, thereby promoting a direct interaction between agrin and MuSK. Our cryo-EM analyses therefore uncover the assembly mechanism of agrin/LRP4/MuSK signaling complex and reveal how MuSK receptor is activated by concurrent binding of agrin and LRP4.


Asunto(s)
Agrina , Receptores Colinérgicos , Receptores Colinérgicos/metabolismo , Agrina/química , Agrina/metabolismo , Proteínas Relacionadas con Receptor de LDL/química , Transducción de Señal , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
2.
J Biol Chem ; 299(8): 104962, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356721

RESUMEN

Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.


Asunto(s)
Acetilcolinesterasa , Agrina , Colágeno , Unión Neuromuscular , Humanos , Acetilcolinesterasa/metabolismo , Agrina/genética , Agrina/metabolismo , Colágeno/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
3.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34714331

RESUMEN

The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway that is crucial in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that, similar to axial muscle, developing appendicular muscles form aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. We find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve regions and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in addition to the canonical pathway in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK-dependent neuromuscular synapse organization. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.


Asunto(s)
Agrina/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/inervación , Aletas de Animales/metabolismo , Animales , Axones/metabolismo , Proteínas de Homeodominio/genética , Proteínas Relacionadas con Receptor de LDL/genética , Músculo Esquelético/inervación , Mutación , Receptores Colinérgicos/metabolismo , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969874

RESUMEN

During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing ß-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.


Asunto(s)
Agrina/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Corazón/embriología , Corazón/crecimiento & desarrollo , Organogénesis/fisiología , Animales , Femenino , Heterogeneidad Genética , Aparato de Golgi , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Pericardio/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015092

RESUMEN

Upon the stimulation of extracellular cues, a significant number of proteins are synthesized distally along the axon. Although local protein synthesis is crucial for various stages throughout neuronal development, its involvement in presynaptic differentiation at developing neuromuscular junctions remains unknown. By using axon severing and microfluidic chamber assays, we first showed that treatment of a protein synthesis inhibitor, cycloheximide, inhibits agrin-induced presynaptic differentiation in cultured Xenopus spinal neurons. Newly synthesized proteins are prominently detected, as revealed by the staining of click-reactive cell-permeable puromycin analog O-propargyl-puromycin, at agrin bead-neurite contacts involving the mTOR/4E-BP1 pathway. Next, live-cell time-lapse imaging demonstrated the local capturing and immobilization of ribonucleoprotein granules upon agrin bead stimulation. Given that our recent study reported the roles of membrane-type 1 matrix metalloproteinase (MT1-MMP) in agrin-induced presynaptic differentiation, here we further showed that MT1-MMP mRNA is spatially enriched and locally translated at sites induced by agrin beads. Taken together, this study reveals an essential role for axonal MT1-MMP translation, on top of the well-recognized long-range transport of MT1-MMP proteins synthesized from neuronal cell bodies, in mediating agrin-induced presynaptic differentiation.


Asunto(s)
Agrina/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Neurogénesis/fisiología , Biosíntesis de Proteínas/fisiología , Xenopus laevis/embriología , Animales , Axones/metabolismo , Células Cultivadas , Cicloheximida/farmacología , Metaloproteinasa 14 de la Matriz/genética , Microfluídica/métodos , Neurogénesis/efectos de los fármacos , Unión Neuromuscular/embriología , Terminales Presinápticos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
6.
J Neurosci Res ; 102(7): e25361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034899

RESUMEN

Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.


Asunto(s)
Astrocitos , Neuronas , Proteoglicanos , Animales , Proteoglicanos/metabolismo , Neuronas/metabolismo , Astrocitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microambiente Celular/fisiología , Sistema Nervioso Central/metabolismo , Plasticidad Neuronal/fisiología
7.
Mol Cell Neurosci ; 125: 103860, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37182573

RESUMEN

One of the effects of hypercholesterolemia (Hch) exerted on the central nervous system (CNS) is damage to the blood-brain barrier (BBB). Increased permeability of BBB results from structural changes in the vascular wall, loss of the tight junctions and barrier function, as well as alterations in the concentration of proteins located in the layers of the vascular wall. These changes occur in the course of metabolic and neurodegenerative diseases. The important role in the course of these processes is attributed to agrin, matrix metalloproteinase-9, and aquaporin-4. In this study, we aimed to determine: 1) the extent of Hch-induced damage to the BBB during maturation, and 2) the distribution of the above-mentioned markers in the vascular wall. Immunohistochemical staining and confocal microscopy were used for vascular wall protein assessment. The size of BBB damage was studied based on perivascular leakage of fluorescently labeled dextran. Three- and twelve-month-old male LDLR-/-/Apo E-/- double knockout mice (EX) developing Hch were used in the study. Age-matched male wild-type (WT) C57BL/6 mice were used as a control group. Differences in the concentration of studied markers coexisted with BBB disintegration, especially in younger mice. A relationship between the maturation of the vascular system and reduction of the BBB damage was also observed. We conclude that the extent of BBB permeability depends on animal age, duration of Hch, and brain region. These may explain different susceptibility of various brain areas to Hch, and different presentation of this pathology depending on age and its duration.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Masculino , Ratones , Apolipoproteínas E/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/metabolismo
8.
Gerontology ; 69(1): 73-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35605581

RESUMEN

AIM: We planned a cross-sectional investigation (study 1) and a longitudinal training intervention (study 2) to investigate whether recreational dancing affords greater neuroprotective effects against age-related neuromuscular junction (NMJ) degeneration compared to general fitness exercise training. METHODS: In study 1, we recruited 19 older volunteers regularly practising dancing (older dancers [OD]) and 15 recreationally physically active older individuals (OA) and physical performance, muscle morphology, muscle function, and NMJ stability (from serum C-terminal agrin fragment [CAF] concentration) were assessed. In study 2, employing a longitudinal study design in a different cohort (composed of 37 older adults), we aimed to study whether a 6-month dancing intervention decreased CAF concentration compared to general fitness exercise training in older adults. RESULTS: Our findings show that OD had a lower CAF concentration (suggesting an increased NMJ stability) compared to OA. This result was accompanied by superior functional performance despite no differences in muscle size. In study 2, we observed a reduction in CAF concentration only in the dancing group. CONCLUSION: Overall, these findings suggest that dancing is an effective training modality to promote neuroprotection and increase muscle function in healthy older individuals.


Asunto(s)
Baile , Fármacos Neuroprotectores , Humanos , Anciano , Baile/fisiología , Estudios Longitudinales , Estudios Transversales , Envejecimiento
9.
Aging Clin Exp Res ; 35(6): 1161-1186, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36977974

RESUMEN

BACKGROUND: C-terminal Agrin Fragment (CAF) has emerged as a potent biomarker for identifying sarcopenia. However, the effect of interventions on CAF concentration and the association of CAF with sarcopenia components are unclear. OBJECTIVE: To review the association between CAF concentration and muscle mass, muscle strength, and physical performance among individuals with primary and secondary sarcopenia and to synthesize the effect of interventions on the change in the level of CAF concentration. METHODS: A systematic literature search was conducted in six electronic databases, and studies were included if they met the selection criteria decided a priori. The data extraction sheet was prepared, validated, and extracted relevant data. RESULTS: A total of 5,158 records were found, of which 16 were included. Among studies conducted on individuals with primary sarcopenia, muscle mass was significantly associated with CAF levels, followed by hand grip strength (HGS) and physical performance, with more consistent findings in males. While in secondary sarcopenics, the strongest association was found for HGS and CAF levels, followed by physical performance and muscle mass. CAF concentration was reduced in trials that used functional, dual task, and power training, whereas resistance training and physical activity raised CAF levels. Hormonal therapy did not affect serum CAF concentration. CONCLUSION(S): The association between CAF and sarcopenic assessment parameters varies in primary and secondary sarcopenics. The findings would help practitioners and researchers choose the best training mode/parameters/exercises to reduce CAF levels and, eventually, manage sarcopenia.


Asunto(s)
Sarcopenia , Humanos , Masculino , Agrina , Fuerza de la Mano/fisiología , Fuerza Muscular
10.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108583

RESUMEN

Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.


Asunto(s)
Neuroblastoma , ARN , Humanos , ARN/metabolismo , Agrina/genética , Agrina/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme Alternativo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo
11.
J Physiol ; 600(21): 4731-4751, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36071599

RESUMEN

Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. KEY POINTS: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes.


Asunto(s)
Contracción Muscular , Transcriptoma , Masculino , Humanos , Contracción Muscular/fisiología , Unión Neuromuscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Electromiografía
12.
J Cell Sci ; 133(15)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32591486

RESUMEN

Agrin is a crucial factor that induces postsynaptic differentiation at neuromuscular junctions (NMJs), but how secreted agrin is locally deposited in the context of extracellular matrix (ECM) environment and its function in presynaptic differentiation remain largely unclear. Here, we report that the proteolytic activity of neuronal membrane-type 1 matrix metalloproteinase (MT1-MMP; also known as MMP14) facilitates agrin deposition and signaling during presynaptic development at NMJs. Firstly, agrin deposition along axons exhibits a time-dependent increase in cultured neurons that requires MMP-mediated focal ECM degradation. Next, local agrin stimulation induces the clustering of mitochondria and synaptic vesicles, two well-known presynaptic markers, and regulates vesicular trafficking and surface insertion of MT1-MMP. MMP inhibitor or MT1-MMP knockdown suppresses agrin-induced presynaptic differentiation, which can be rescued by treatment with the ectodomain of low-density lipoprotein receptor-related protein 4 (Lrp4). Finally, neuronal MT1-MMP knockdown inhibits agrin deposition and nerve-induced acetylcholine receptor clustering in nerve-muscle co-cultures and affects synaptic structures at Xenopus NMJs in vivo Collectively, our results demonstrate a previously unappreciated role of agrin, as well as dual functions of neuronal MT1-MMP proteolytic activity in orchestrating agrin deposition and signaling, in presynaptic development.


Asunto(s)
Agrina , Metaloproteinasa 14 de la Matriz , Agrina/genética , Axones , Matriz Extracelular , Metaloproteinasa 14 de la Matriz/genética , Unión Neuromuscular
13.
Exp Cell Res ; 399(2): 112463, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385417

RESUMEN

Artificial gravity is a potential countermeasure to attenuate effects of weightlessness during long-term spaceflight, including losses of muscle mass and function, possibly to some extent attributable to disturbed neuromuscular interaction. The 60-day AGBRESA bed-rest study was conducted with 24 participants (16 men, 8 women; 33 ± 9 years; 175 ± 9 cm; 74 ± 10 kg; 8 control group, 8 continuous (cAG) and 8 intermittent (iAG) centrifugation) to assess the impact of bed rest with or without daily 30-min continuous/intermittent centrifugation with 1G at the centre of mass. Fasting blood samples were collected before and on day 6, 20, 40 and 57 during 6° head-down tilt bed rest. Concentrations of circulating markers of muscle wasting (GDF-8/myostatin; slow skeletal muscle troponin T; prostaglandin E2), neurotrophic factors (BDNF; GDNF) and C-terminal Agrin Fragment (CAF) were determined by ELISAs. Creatine kinase activity was assessed by colorimetric enzyme assay. Repeated-measures ANOVAs were conducted with TIME as within-subject, and INTERVENTION and SEX as between-subject factors. The analyses revealed no significant effect of bed rest or sex on any of the parameters. Continuous or intermittent artificial gravity is a safe intervention that does not have a negative impact of the neuromuscular secretome.


Asunto(s)
Reposo en Cama , Gravedad Alterada , Inclinación de Cabeza/fisiología , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Adulto , Reposo en Cama/efectos adversos , Estudios de Casos y Controles , Femenino , Gravedad Alterada/efectos adversos , Inclinación de Cabeza/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/inervación , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso , Vías Secretoras , Factores de Tiempo , Adulto Joven
14.
Annu Rev Physiol ; 80: 159-188, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29195055

RESUMEN

Synapses, the fundamental unit in neuronal circuits, are critical for learning and memory, perception, thinking, and reaction. The neuromuscular junction (NMJ) is a synapse formed between motoneurons and skeletal muscle fibers that is covered by Schwann cells (SCs). It is essential for controlling muscle contraction. NMJ formation requires intimate interactions among motoneurons, muscles, and SCs. Deficits in NMJ formation and maintenance cause neuromuscular disorders, including congenital myasthenic syndrome and myasthenia gravis. NMJ decline occurs in aged animals and may appear before clinical presentation of motoneuron disorders such as amyotrophic lateral sclerosis. We review recent findings in NMJ formation, maintenance, neuromuscular disorders, and aging of the NMJ, focusing on communications among motoneurons, muscles and SCs, and underlying mechanisms.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Enfermedades Neuromusculares/fisiopatología , Unión Neuromuscular/fisiología , Animales , Humanos , Fibras Musculares Esqueléticas/fisiología
15.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233091

RESUMEN

Neuronal agrin, a heparan sulphate proteoglycan secreted by the α-motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts.


Asunto(s)
Factores de Edad , Agrina , Proteínas Relacionadas con Receptor de LDL , Agrina/genética , Agrina/metabolismo , Bromodesoxiuridina , Proliferación Celular , Proteína-Tirosina Quinasas de Adhesión Focal , Proteoglicanos de Heparán Sulfato , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Neuronas Motoras/metabolismo , Mioblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
16.
J Biol Chem ; 295(31): 10677-10688, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32532815

RESUMEN

The maintenance of a high density of the acetylcholine receptor (AChR) is the hallmark of the neuromuscular junction. Muscle-specific anchoring protein (αkap) encoded within the calcium/calmodulin-dependent protein kinase IIα (CAMK2A) gene is essential for the maintenance of AChR clusters both in vivo and in cultured muscle cells. The underlying mechanism by which αkap is maintained and regulated remains unknown. Here, using human cell lines, fluorescence microscopy, and pulldown and immunoblotting assays, we show that α-dystrobrevin (α-dbn), an intracellular component of the dystrophin glycoprotein complex, directly and robustly promotes the stability of αkap in a concentration-dependent manner. Mechanistically, we found that the phosphorylatable tyrosine residues of α-dbn are essential for the stability of α-dbn itself and its interaction with αkap, with substitution of three tyrosine residues in the α-dbn C terminus with phenylalanine compromising the αkap-α-dbn interaction and significantly reducing both αkap and α-dbn accumulation. Moreover, the αkap-α-dbn interaction was critical for αkap accumulation and stability. We also found that the absence of either αkap or α-dbn markedly reduces AChRα accumulation and that overexpression of α-dbn or αkap in cultured muscle cells promotes the formation of large agrin-induced AChR clusters. Collectively, these results indicate that the stability of αkap and α-dbn complex plays an important role in the maintenance of high-level expression of AChRs.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Asociadas a la Distrofina/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/metabolismo , Receptores Colinérgicos/biosíntesis , Proteínas de Anclaje a la Quinasa A/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Asociadas a la Distrofina/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Complejos Multiproteicos/genética , Neuropéptidos/genética , Dominios Proteicos , Estabilidad Proteica , Receptores Colinérgicos/genética
17.
Circulation ; 142(9): 868-881, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32508131

RESUMEN

BACKGROUND: Ischemic heart diseases are leading causes of death and reduced life quality worldwide. Although revascularization strategies significantly reduce mortality after acute myocardial infarction (MI), a large number of patients with MI develop chronic heart failure over time. We previously reported that a fragment of the extracellular matrix protein agrin promotes cardiac regeneration after MI in adult mice. METHODS: To test the therapeutic potential of agrin in a preclinical porcine model, we performed ischemia-reperfusion injuries using balloon occlusion for 60 minutes followed by a 3-, 7-, or 28-day reperfusion period. RESULTS: We demonstrated that local (antegrade) delivery of recombinant human agrin to the infarcted pig heart can target the affected regions in an efficient and clinically relevant manner. A single dose of recombinant human agrin improved heart function, infarct size, fibrosis, and adverse remodeling parameters 28 days after MI. Short-term MI experiments along with complementary murine studies revealed myocardial protection, improved angiogenesis, inflammatory suppression, and cell cycle reentry as agrin's mechanisms of action. CONCLUSIONS: A single dose of agrin is capable of reducing ischemia-reperfusion injury and improving heart function, demonstrating that agrin could serve as a therapy for patients with acute MI and potentially heart failure.


Asunto(s)
Agrina/farmacología , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Recuperación de la Función/efectos de los fármacos , Animales , Humanos , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Proteínas Recombinantes/farmacología , Porcinos
18.
Development ; 145(9)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29678817

RESUMEN

The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.


Asunto(s)
Agrina/metabolismo , Proteínas Aviares/metabolismo , Pollos/metabolismo , Colágeno/metabolismo , Sistema Digestivo , Cresta Neural/embriología , Nicho de Células Madre/fisiología , Agrina/genética , Animales , Proteínas Aviares/genética , Movimiento Celular/fisiología , Embrión de Pollo , Pollos/genética , Colágeno/genética , Sistema Digestivo/citología , Sistema Digestivo/embriología , Sistema Digestivo/inervación , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Cresta Neural/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
19.
Cell Tissue Res ; 386(2): 335-347, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34223979

RESUMEN

The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources. Moreover, the disruption of Agrin impaired the expression of its receptors and osteoblast differentiation, and the treatment with recombinant Agrin slightly increase this process. In addition, whilst Agrin knockdown downregulated the expression of genes related to Wnt and BMP signalling pathways, the addition of Agrin had no effect on these genes. Altogether, these data uncover the contribution of Agrin to osteoblast differentiation and suggest that, at least in part, an Agrin-Wnt-BMP circuit is involved in this process. This makes Agrin a candidate as target for developing new therapeutic strategies to treat bone-related diseases and injuries.


Asunto(s)
Agrina/análisis , Osteoblastos/citología , Células 3T3 , Agrina/genética , Animales , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis
20.
FASEB J ; 34(9): 12009-12023, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32687671

RESUMEN

Neuromuscular junctions (NMJs) are peripheral synapses between motoneurons and skeletal muscle fibers that are critical for the control of muscle contraction. Dysfunction of these synapses has been implicated in congenital myasthenic syndrome (CMS). In vertebrates, agrin-LRP4-MuSK signaling plays a critical role in acetylcholine receptor (AChR) clustering and NMJ formation. The adaptor protein DOK7 is the downstream substrate of MuSK and also a cytoplasmic activator of MuSK. The role of DOK7 in the promotion of AChR clustering and the mechanisms involved have been well studied; however, the negative regulation of DOK7 after MuSK activation remains unknown. Anaphase-promoting complex 2 (APC2), the core subunit of APC/C E3 ligase complex, was originally believed to regulate cell-cycle transitions. Here, we show that APC2 is enriched at post-synapse of NMJs in postmitotic myotubes. In response to agrin stimulation, APC2 negatively regulates AChR clustering by promoting the ubiquitination of DOK7 at lysine 243 for its proteolytic degradation, which relies on MuSK kinase activity and the phosphorylation of tyrosine 106 in DOK7. Thus, this study provides a mechanism whereby agrin signaling is negatively regulated as part of vertebrate NMJ homeostasis.


Asunto(s)
Agrina/metabolismo , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteolisis , Transducción de Señal , Ubiquitinación , Agrina/genética , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclo Celular , Línea Celular , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA