Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Environ Manage ; 296: 113193, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34237671

RESUMEN

Following the escalating human population growth and rapid urbanization, the tremendous amount of urban and industrial waste released leads to a series of critical issues such as health issues, climate change, water crisis, and pollution problems. With the advantages of a favorable carbon life cycle, high photosynthetic efficiencies, and being adaptive to harsh environments, algae have attracted attention as an excellent agent for pollution prevention and waste phycoremediation. Following the concept of circular economy and biorefinery for sustainable production and waste minimization, this review discusses the role of four different algal-based wastewater treatment technologies, including high-rate algal ponds (HRAPs), HRAP-absorption column (HRAP-AC), hybrid algal biofilm-enhanced raceway pond (HABERP) and algal turf scrubber (ATS) in waste management and resource recovery. In addition to the nutrient removal mechanisms and operation parameters, recent advances and developments have been discussed for each technology, including (1) Innovative operation strategies and treatment of emerging contaminants (ECs) employing HRAPs, (2) Biogas upgrading utilizing HRAP-AC system and approaches of O2 minimization in biomethane, (3) Operation of different HABERP systems, (4) Life-cycle and cost analysis of HRAPs-based wastewater treatment system, and (5) Value-upgrading for harvested algal biomass and life-cycle cost analysis of ATS system.


Asunto(s)
Microalgas , Purificación del Agua , Biomasa , Humanos , Estanques , Tecnología , Eliminación de Residuos Líquidos , Aguas Residuales
2.
Microorganisms ; 11(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38138138

RESUMEN

Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.

3.
Front Bioeng Biotechnol ; 10: 962719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147532

RESUMEN

This study investigated and optimized the nutrient remediation efficiency of a simple low-cost algal biofilm reactor, the algal turf scrubber (ATS), for wastewater treatment. Combined effects of three cultivation variables-total inorganic carbon, nitrogen-to-phosphorous (N:P) ratio, and light intensity-were examined. The ATS nutrient removal efficiency and biomass productivity were analyzed considering the response surface methodology (RSM). The maximum removal rates of total P and N were 8.3 and 19.1 mg L-1 d-1, respectively. As much as 99% of total P and 100% of total N were removed within 7 days. Over the same period, the dissolved oxygen concentration and pH value of the medium increased. The optimal growth conditions for simultaneous maximum P and N removal and biomass productivity were identified. Our RSM-based optimization results provide new insights into the combined effect of nutrient and light availability on the ATS remediation efficiency and biomass productivity.

4.
Water Res ; 191: 116816, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476801

RESUMEN

The purpose of this study is to determine the potential for an attached algae flow-way system to efficiently produce algal biomass in estuarine surface waters by utilizing dilute non-point source nutrients from local urban, industrial, and agricultural discharges into the Upper Laguna Madre, Corpus Christi, Texas. The study was conducted over the course of two years to establish seasonal base-line biomass productivity and composition for bioproducts applications, and to identify key environmental factors and flow-way cohorts impacting biomass production. For the entire cultivation period, continuous ash-free biomass production at 4 to 10 g/m2/day (corresponding to nutrient recovery at 300 to 500 mg of nitrogen/m2/day and 15 to 30 mg of phosphorus/m2/day) was successfully achieved without system restart. Upon start-up, a latency period was observed which indicates roles for species succession from relatively low productivity, high ash content pioneer periphytic culture composed primarily of benthic diatoms from the source waters to higher productivity, reduced ash content, and more resilient culture mainly composed of filamentous chlorophyta, Ulva lactuca. Principal Component Analysis (PCA) was used to identify environmental factors driving biomass production, and machine learning (ML) models were constructed to assess the predictive capability of the data set for system performance using the local multi-season environmental variations. Environmental datasets were segregated for ML training, validation, and testing using three methods: regression tree, ensemble regression, and Gaussian process regression (GPR). The predicted ash-free biomass productivity using ML models resulted in root-squared-mean-errors (RSME) from 1.78 to 1.86 g/m2/day, and R2 values from 0.67 to 0.75 using different methods. The greatest contributor to net productivity was total solar irradiation, followed by air temperature, salinity, and pH. The results of the study should be useful as a decision-making tool to application of attached algae flow-ways for biomass production while preventing algal blooms in the environment.


Asunto(s)
Nitrógeno , Fósforo , Biomasa , Nitrógeno/análisis , Nutrientes , Texas
5.
Bioresour Technol ; 298: 122556, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31843358

RESUMEN

Wastewater treatment using algae is a promising approach for efficient removal of contaminating nutrients and their conversion into useful products. Monocultures of filamentous algae provide easier harvesting compared to microalgae, and better control of biomass quality than polyculture systems such as algal turf scrubbers. In this review, recent research into wastewater treatment using freshwater filamentous algae is compiled and critically analysed. Focus is given to filamentous algae monocultures, with key relevant findings from microalgae and polyculture systems discussed and compared. The application of monocultures of filamentous algae is an emerging area of research. Gaps are identified in our understanding of key aspects important to large-scale system design, including criteria for species selection, influence of nutrient type and loading, inorganic carbon supply, algae-bacteria interactions, and parameters such as pond depth, mixing and harvesting regimes. This technology has much promise, however future research is needed to maximise productivity and wastewater treatment efficiency.


Asunto(s)
Microalgas , Aguas Residuales , Biomasa , Nitrógeno , Fósforo
6.
Water Res ; 92: 61-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26841229

RESUMEN

Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae.


Asunto(s)
Agricultura , Reactores Biológicos/microbiología , Microalgas/metabolismo , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Aguas Residuales/química , Purificación del Agua/métodos , Biomasa
7.
Bioresour Technol ; 222: 294-308, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27728832

RESUMEN

An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded ∼0.2LmethanepergVS at loading rates up to 5gVS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae.


Asunto(s)
Agricultura , Chlorella/metabolismo , Lípidos/biosíntesis , Metano/biosíntesis , Microalgas/metabolismo , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Anaerobiosis , Biodegradación Ambiental , Biocombustibles , Biomasa , Reactores Biológicos/microbiología , Chlorella/crecimiento & desarrollo , Ésteres/metabolismo , Fertilizantes , Lípidos/química , Estaciones del Año , Solubilidad , Volatilización , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/aislamiento & purificación
8.
Bioresour Technol ; 152: 484-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24333625

RESUMEN

The objectives of this study were to determine nutrient removal rates and costs using solar-powered algal turf scrubber (ATS) raceways and water from an agricultural drainage ditch. Algal productivity using daytime-only flow was 3-lower compared to productivity using continuous flow. Results from this and other studies suggest a non-linear relationship between flow rate and nitrogen removal rates. Nitrogen (N) and phosphorus (P) removal rates averaged 125 mg N, 25 mg P m(-2) d(-1) at the highest flow rates. Nutrient removal rates were equivalent to 310 kg N and 33 kg P ha(-1) over a 7 month season. Projected nutrient removal costs ($90-$110 kg(-1) N or $830-$1050 kg(-1) P) are >10-fold higher than previous estimates for ATS units used to treat manure effluents.


Asunto(s)
Agricultura , Restauración y Remediación Ambiental/métodos , Eucariontes/metabolismo , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Energía Solar , Aguas Residuales/química , Biodegradación Ambiental , Biomasa , Costos y Análisis de Costo , Electricidad , Restauración y Remediación Ambiental/economía , Aguas Residuales/economía , Contaminantes Químicos del Agua/economía , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/economía
9.
J Phycol ; 49(3): 489-501, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27007038

RESUMEN

Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA