Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Endocr J ; 69(12): 1363-1372, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36372440

RESUMEN

It has been well established that undernutrition and low energy availability disturb female reproductive functions in humans and many animal species. These reproductive dysfunctions are mainly caused by alterations of some hypothalamic factors, and consequent reduction of gonadotrophin-releasing hormone (GnRH) secretion. Evidence from literature suggests that increased activity of orexigenic factors and decreased activity of anorexigenic/satiety-related factors in undernourished conditions attenuate GnRH secretion in an integrated manner. Likewise, the activity of kisspeptin neurons, which is a potent stimulator of GnRH, is also reduced in undernourished conditions. In addition, it has been suggested that gonadotrophin-inhibitory hormone, which has anti-GnRH and gonadotrophic effects, may be involved in reproductive dysfunctions under several kinds of stress conditions. It should be remembered that these alterations, i.e., promotion of feeding behavior and temporary suppression of reproductive functions, are induced to prioritize the survival of individual over that of species, and that improvements in metabolic and nutritional conditions should be considered with the highest priority.


Asunto(s)
Hormona Liberadora de Gonadotropina , Desnutrición , Animales , Femenino , Humanos , Gonadotropinas , Hipotálamo/metabolismo , Kisspeptinas/fisiología
2.
J Obstet Gynaecol Res ; 48(3): 568-575, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34979587

RESUMEN

It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.


Asunto(s)
Hormona Liberadora de Gonadotropina , Kisspeptinas , Femenino , Homeostasis/fisiología , Humanos , Hipotálamo/metabolismo , Kisspeptinas/fisiología , Neuropéptido Y/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-30899246

RESUMEN

In fish models, seasonal change in feeding is under the influence of water temperature. However, the effects of temperature on appetite control can vary among fish species and the mechanisms involved have not been fully characterized. Using goldfish (Carassius auratus) as a model, seasonal changes in feeding behavior and food intake were examined in cyprinid species. In our study, foraging activity and food consumption in goldfish were found to be reduced with positive correlation to the gradual drop in water temperature occurring during the transition from summer (28.4 ± 2.2°C) to winter (15.1 ± 2.6°C). In goldfish with a 4-week acclimation at 28°C, their foraging activity and food consumption were notably higher than their counterparts with similar acclimation at 15°C. When compared to the group at 28°C during summer, the attenuation in feeding responses at 15°C during the winter also occurred with parallel rises of leptin I and II mRNA levels in the liver. Meanwhile, a drop in orexin mRNA along with concurrent elevations of CCK, MCH, POMC, CART, and leptin receptor (LepR) transcript expression could be noted in brain areas involved in feeding control. In short-term study, goldfish acclimated at 28°C were exposed to 15°C for 24 h and the treatment was effective in reducing foraging activity and food intake. The opposite was true in reciprocal experiment with a rise in water temperature to 28°C for goldfish acclimated at 15°C. In parallel time-course study with lowering of water temperature from 28 to 15°C, short-term exposure (6-12 h) of goldfish to 15°C could also increase leptin I and II mRNA levels in the liver. Similar to our seasonality study, transcript level of orexin was reduced along with up-regulation of CCK, MCH, POMC, CART, and LepR gene expression in different brain areas. Our results, as a whole, suggest that temperature-driven regulation of leptin output from the liver in conjunction with parallel modulations of orexigenic/anorexigenic signals and leptin responsiveness in the brain may contribute to the seasonal changes of feeding behavior and food intake observed in goldfish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA