RESUMEN
The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.
Asunto(s)
Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/ultraestructura , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Canales de Calcio/ultraestructura , Canales de Calcio Tipo L/fisiología , Microscopía por Crioelectrón , Diltiazem , Ligandos , Masculino , Modelos Moleculares , Nifedipino , Conejos , VerapamiloRESUMEN
Invasive fungal infections are associated with high mortality rates, and the lack of efficient treatment options emphasizes an urgency to identify underlying disease mechanisms. We report that disseminated Candida albicans infection is facilitated by interleukin-1 receptor antagonist (IL-1Ra) secreted from macrophages in two temporally and spatially distinct waves. Splenic CD169+ macrophages release IL-1Ra into the bloodstream, impeding early neutrophil recruitment. IL-1Ra secreted by monocyte-derived tissue macrophages further impairs pathogen containment. Therapeutic IL-1Ra neutralization restored the functional competence of neutrophils, corrected maladapted hyper-inflammation, and eradicated the otherwise lethal infection. Conversely, augmentation of macrophage-secreted IL-1Ra by type I interferon severely aggravated disease mortality. Our study uncovers how a fundamental immunoregulatory mechanism mediates the high disease susceptibility to invasive candidiasis. Furthermore, interferon-stimulated IL-1Ra secretion may exacerbate fungal dissemination in human patients with secondary candidemia. Macrophage-secreted IL-1Ra should be considered as an additional biomarker and potential therapeutic target in severe systemic candidiasis.
Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Sepsis , Humanos , Candida albicans , Macrófagos , Receptores de Interleucina-1RESUMEN
Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.
Asunto(s)
Antagonistas de Receptores de Cannabinoides/química , Morfolinas/química , Pirazoles/química , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/química , Sitios de Unión , Cannabinoides/farmacología , Cannabis/química , Cristalografía por Rayos X , Dronabinol/farmacología , Endocannabinoides/farmacología , Humanos , Ligandos , Morfolinas/síntesis química , Unión Proteica , Conformación Proteica en Hélice alfa , Pirazoles/síntesis químicaRESUMEN
Apoptosis can potently defend against intracellular pathogens by directly killing microbes and eliminating their replicative niche. However, the reported ability of Mycobacterium tuberculosis to restrict apoptotic pathways in macrophages in vitro has led to apoptosis being dismissed as a host-protective process in tuberculosis despite a lack of in vivo evidence. Here we define crucial in vivo functions of the death receptor-mediated and BCL-2-regulated apoptosis pathways in mediating protection against tuberculosis by eliminating distinct populations of infected macrophages and neutrophils and priming T cell responses. We further show that apoptotic pathways can be targeted therapeutically with clinical-stage compounds that antagonize inhibitor of apoptosis (IAP) proteins to promote clearance of M. tuberculosis in mice. These findings reveal that any inhibition of apoptosis by M. tuberculosis is incomplete in vivo, advancing our understanding of host-protective responses to tuberculosis (TB) and revealing host pathways that may be targetable for treatment of disease.
Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Neutrófilos/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular , Dipéptidos/uso terapéutico , Humanos , Indoles/uso terapéutico , Activación de Linfocitos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/microbiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Linfocitos T/inmunología , Tiazoles/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológicoRESUMEN
Profound functional switch of key regulatory factors may play a major role in homeostasis and disease. Dysregulation of circadian rhythm (CR) is strongly implicated in cancer with mechanisms poorly understood. We report here that the function of REV-ERBα, a major CR regulator of the orphan nuclear receptor subfamily, is dramatically altered in tumors in both its genome binding and functional mode. Loss of CR is linked to a functional inversion of REV-ERBα from a repressor in control of CR and metabolic gene programs in normal tissues to a strong activator in different cancers. Through changing its association from NCoR/HDAC3 corepressor complex to BRD4/p300 coactivators, REV-ERBα directly activates thousands of genes including tumorigenic programs such as MAPK and PI3K-Akt signaling. Functioning as a master transcriptional activator, REV-ERBα partners with pioneer factor FOXA1 and directly stimulates a large number of signaling genes, including multiple growth factors, receptor tyrosine kinases, RASs, AKTs, and MAPKs. Moreover, elevated REV-ERBα reprograms FOXA1 to bind new targets through a BRD4-mediated increase in local chromatin accessibility. Pharmacological targeting with SR8278 diminishes the function of both REV-ERBα and FOXA1 and synergizes with BRD4 inhibitor in effective suppression of tumorigenic programs and tumor growth. Thus, our study revealed a functional inversion by a CR regulator in driving gene reprogramming as an unexpected paradigm of tumorigenesis mechanism and demonstrated a high effectiveness of therapeutic targeting such switch.
Asunto(s)
Carcinogénesis , Ritmo Circadiano , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Humanos , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Carcinogénesis/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Transducción de Señal , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Proteínas que Contienen BromodominioRESUMEN
Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.
Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Leucemia Linfocítica Crónica de Células B , FN-kappa B , Transducción de Señal , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Interferones/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/antagonistas & inhibidoresRESUMEN
CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.
Asunto(s)
Quimiocina CCL5/química , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/inmunología , VIH-1/fisiología , Modelos Moleculares , Imitación Molecular , Receptores CCR5/química , Animales , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/farmacología , Quimiocina CCL5/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Ciclohexanos/química , Ciclohexanos/farmacología , Proteína gp120 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/química , Infecciones por VIH/tratamiento farmacológico , Humanos , Maraviroc , Unión Proteica , Conformación Proteica , Receptores CCR5/metabolismo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología , Internalización del Virus/efectos de los fármacosRESUMEN
Inflammatory responses mediated by NOD2 rely on RIP2 kinase and ubiquitin ligase XIAP for the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinases (MAPKs), and cytokine production. Herein, we demonstrate that selective XIAP antagonism blocks NOD2-mediated inflammatory signaling and cytokine production by interfering with XIAP-RIP2 binding, which removes XIAP from its ubiquitination substrate RIP2. We also establish that the kinase activity of RIP2 is dispensable for NOD2 signaling. Rather, the conformation of the RIP2 kinase domain functions to regulate binding to the XIAP-BIR2 domain. Effective RIP2 kinase inhibitors block NOD2 signaling by disrupting RIP2-XIAP interaction. Finally, we identify NOD2 signaling and XIAP-dependent ubiquitination sites on RIP2 and show that mutating these lysine residues adversely affects NOD2 pathway signaling. Overall, these results reveal a critical role for the XIAP-RIP2 interaction in NOD2 inflammatory signaling and provide a molecular basis for the design of innovative therapeutic strategies based on XIAP antagonists and RIP2 kinase inhibitors.
Asunto(s)
Aminoquinolinas/farmacología , Inflamación/prevención & control , Proteína Adaptadora de Señalización NOD2/antagonistas & inhibidores , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Sulfonas/farmacología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Células Cultivadas , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidoresRESUMEN
Molecular vibrations and quantum tunneling may link ligand binding to the function of pharmacological receptors. The well-established lock-and-key model explains a ligand's binding and recognition by a receptor; however, a general mechanism by which receptors translate binding into activation, inactivation, or modulation remains elusive. The Vibration Theory of Olfaction was proposed in the 1930s to explain this subset of receptor-mediated phenomena by correlating odorant molecular vibrations to smell, but a mechanism was lacking. In the 1990s, inelastic electron tunneling was proposed as a plausible mechanism for translating molecular vibration to odorant physiology. More recently, studies of ligands' vibrational spectra and the use of deuterated ligand analogs have provided helpful information to study this admittedly controversial hypothesis in metabotropic receptors other than olfactory receptors. In the present work, based in part on published experiments from our laboratory using planarians as an experimental organism, I will present a rationale and possible experimental approach for extending this idea to ligand-gated ion channels.
Asunto(s)
Vibración , Ligandos , Animales , Teoría Cuántica , Humanos , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Unión ProteicaRESUMEN
GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.
Asunto(s)
Inhibición Psicológica , Neuralgia , Humanos , Microscopía por Crioelectrón , Unión CompetitivaRESUMEN
G-protein-gated inward rectifier K+ (GIRK) channels play a critical role in the regulation of the excitability of cardiomyocytes and neurons and include GIRK1, GIRK2, GIRK3 and GIRK4 subfamily members. BD1047 dihydrobromide (BD1047) is one of the representative antagonists of the multifunctional Sigma-1 receptor (S1R). In the analysis of the effect of BD1047 on the regulation of Gi-coupled receptors by S1R using GIRK channel as an effector, we observed that BD1047, as well as BD1063, directly inhibited GIRK currents even in the absence of S1R and in a voltage-independent manner. Thus, we aimed to clarify the effect of BD1047 on GIRK channels and identify the structural determinants. By electrophysiological recordings in Xenopus oocytes, we observed that BD1047 directly inhibited GIRK channel currents, producing a much stronger inhibition of GIRK4 compared to GIRK2. It also inhibited ACh-induced native GIRK current in isolated rat atrial myocytes. Chimeric and mutagenesis studies of GIRK2 and GIRK4 combined with molecular docking analysis demonstrated the importance of Leu77 and Leu84 within the cytoplasmic, proximal N-terminal region and Glu147 within the pore-forming region of GIRK4 for inhibition by BD1047. The activator of GIRK channels, ivermectin, competed with BD1047 at Leu77 on GIRK4. This study provides us with a novel inhibitor of GIRK channels and information for developing pharmacological treatments for GIRK4-associated diseases.
Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Receptores sigma , Receptor Sigma-1 , Animales , Ratas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Oocitos/metabolismo , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inhibidores , Receptores sigma/genética , Receptores sigma/química , Xenopus laevis , Ratas WistarRESUMEN
Alzheimer's disease (AD) poses an immense challenge in healthcare, lacking effective therapies. This study investigates the potential of anthranilamide derivative (AAD23), a selective M2 receptor antagonist, in proactively preventing cognitive impairments and cholinergic neuronal degeneration in G protein-coupled receptor kinase-5-deficient Swedish APP (GAP) mice. GAP mice manifest cognitive deficits by 7 months and develop senile plaques by 9 months. A 6-month AAD23 treatment was initiated at 5 months and stopped at 11 months before behavioral assessments without the treatment. AAD23-treated mice exhibited preserved cognitive abilities and improved cholinergic axonal health in the nucleus basalis of Meynert akin to wildtype mice. Conversely, vehicle-treated GAP mice displayed memory deficits and pronounced cholinergic axonal swellings in the nucleus basalis of Meynert. Notably, AAD23 treatment did not alter senile plaques and microgliosis. These findings highlight AAD23's efficacy in forestalling AD-related cognitive decline in G protein-coupled receptor kinase-5-deficient subjects, attributing its success to restoring cholinergic neuronal integrity and resilience, enhancing resistance against diverse degenerative insults.
Asunto(s)
Enfermedad de Alzheimer , Neuronas Colinérgicas , Disfunción Cognitiva , Quinasa 5 del Receptor Acoplado a Proteína-G , Animales , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/patología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Ratones TransgénicosRESUMEN
Most SARS-CoV-2 proteins are translated from subgenomic RNAs (sgRNAs). While the majority of these sgRNAs are monocistronic, some viral mRNAs encode more than one protein. One example is the ORF3a sgRNA that also encodes ORF3c, an enigmatic 41-amino-acid peptide. Here, we show that ORF3c is expressed in SARS-CoV-2-infected cells and suppresses RIG-I- and MDA5-mediated IFN-ß induction. ORF3c interacts with the signaling adaptor MAVS, induces its C-terminal cleavage, and inhibits the interaction of RIG-I with MAVS. The immunosuppressive activity of ORF3c is conserved among members of the subgenus sarbecovirus, including SARS-CoV and coronaviruses isolated from bats. Notably, however, the SARS-CoV-2 delta and kappa variants harbor premature stop codons in ORF3c, demonstrating that this reading frame is not essential for efficient viral replication in vivo and is likely compensated by other viral proteins. In agreement with this, disruption of ORF3c does not significantly affect SARS-CoV-2 replication in CaCo-2, CaLu-3, or Rhinolophus alcyone cells. In summary, we here identify ORF3c as an immune evasion factor of SARS-CoV-2 that suppresses innate sensing in infected cells.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Células CACO-2 , COVID-19/genética , Transducción de Señal , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata/genéticaRESUMEN
BACKGROUND: Kawasaki disease (KD) is an acute febrile illness and systemic vasculitis often associated with cardiac sequelae, including arrhythmias. Abundant evidence indicates a central role for IL (interleukin)-1 and TNFα (tumor necrosis factor-alpha) signaling in the formation of arterial lesions in KD. We aimed to investigate the mechanisms underlying the development of electrophysiological abnormalities in a murine model of KD vasculitis. METHODS: Lactobacillus casei cell wall extract-induced KD vasculitis model was used to investigate the therapeutic efficacy of clinically relevant IL-1Ra (IL-1 receptor antagonist) and TNFα neutralization. Echocardiography, in vivo electrophysiology, whole-heart optical mapping, and imaging were performed. RESULTS: KD vasculitis was associated with impaired ejection fraction, increased ventricular tachycardia, prolonged repolarization, and slowed conduction velocity. Since our transcriptomic analysis of human patients showed elevated levels of both IL-1ß and TNFα, we asked whether either cytokine was linked to the development of myocardial dysfunction. Remarkably, only inhibition of IL-1 signaling by IL-1Ra but not TNFα neutralization was able to prevent changes in ejection fraction and arrhythmias, whereas both IL-1Ra and TNFα neutralization significantly improved vasculitis and heart vessel inflammation. The treatment of L casei cell wall extract-injected mice with IL-1Ra also restored conduction velocity and improved the organization of Cx43 (connexin 43) at the intercalated disk. In contrast, in mice with gain of function of the IL-1 signaling pathway, L casei cell wall extract induced spontaneous ventricular tachycardia and premature deaths. CONCLUSIONS: Our results characterize the electrophysiological abnormalities associated with L casei cell wall extract-induced KD and show that IL-1Ra is more effective in preventing KD-induced myocardial dysfunction and arrhythmias than anti-TNFα therapy. These findings support the advancement of clinical trials using IL-1Ra in patients with KD.
Asunto(s)
Cardiomiopatías , Síndrome Mucocutáneo Linfonodular , Taquicardia Ventricular , Vasculitis , Humanos , Animales , Ratones , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Taquicardia Ventricular/prevención & control , Taquicardia Ventricular/complicacionesRESUMEN
Bivalent Smac mimetics have been shown to possess binding affinity and pro-apoptotic activity similar to or more potent than that of native Smac, a protein dimer able to neutralize the anti-apoptotic activity of an inhibitor of caspase enzymes, XIAP, which endows cancer cells with resistance to anticancer drugs. We design five new bivalent Smac mimetics, which are formed by various linkers tethering two diazabicyclic cores being the IAP binding motifs. We built in silico models of the five mimetics by the TwistDock workflow and evaluated their conformational tendency, which suggests that compound 3, whose linker is n-hexylene, possess the highest binding potency among the five. After synthesis of these compounds, their ability in tumour cell growth inhibition and apoptosis induction displayed in experiments with SK-OV-3 and MDA-MB-231 cancer cell lines confirms our prediction. Among the five mimetics, compound 3 displays promising pro-apoptotic activity and deserves further optimization.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Inhibidoras de la Apoptosis/farmacología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Conformación Molecular , Apoptosis , Línea Celular TumoralRESUMEN
Immunoglobulin (Ig) VSTM2A (V-set and transmembrane domain containing 2A) is a top-ranked secretory protein frequently silenced during colorectal carcinogenesis; however, its role in immune modulation remains largely unknown. Bioinformatic and immunohistochemistry analysis of human colorectal specimens and Vstm2a+/- knockout mice indicated that VSTM2A positively correlated with CD8a and immune infiltration in both physiological and pathological conditions. We then utilized liquid chromatography-mass spectrometry to pinpoint programmed death ligand 1 (PD-L1) as a membrane receptor of VSTM2A. A series of in vitro biochemistry assays further revealed the binding pattern and kinetics between VSTM2A and PD-L1 proteins through their IgV domains at a dissociation constant of 0.7-2.5 nM. Recombinant VSTM2A protein inhibited the PD-1/PD-L1 interaction and induced NFAT response element (RE) luciferase activity dose dependently. Furthermore, interleukin (IL)-2 production from DO11.10 T cells upon co-culture with mouse non-T splenocytes was upregulated in the presence of VSTM2A conditioned medium. Finally, tumor killing assay and ex vivo data from human peripheral blood mononuclear cells and autologous dendritic cell-T cell co-culture demonstrated that VSTM2A significantly enhanced immune activation via the release of granzyme B and interferon (IFN)-γ cytokines. In conclusion, our study demonstrates the tumor-extrinsic role of VSTM2A in sterically blocking the PD-L1/PD-1 interaction at a picomole to nanomole affinity, which leads to the enhanced anti-tumor effect of cytotoxic T cells.
RESUMEN
RATIONALE: Idiopathic pulmonary fibrosis (IPF) and progressive pulmonary fibrosis (PPF) have high morbidity and mortality; thus, novel treatments are needed. OBJECTIVES: Assess efficacy and safety of admilparant (BMS-986278), an oral lysophosphatidic acid receptor 1 antagonist, in patients with IPF and PPF. METHODS: This phase 2, randomized, double-blind, placebo-controlled trial included parallel cohorts of patients with IPF (n = 278 randomized, n = 276 treated) or PPF (n = 125 randomized, n = 123 treated) who received 30-mg admilparant, 60-mg admilparant, or placebo (1:1:1) twice daily for 26 weeks. Background antifibrotics (both cohorts) and immunosuppressants (PPF only) were permitted. MEASUREMENTS AND MAIN RESULTS: Rates of change in percentage of predicted forced vital capacity (ppFVC) over 26 weeks for IPF were -2.7% (placebo), -2.8% (30-mg), and -1.2% (60-mg) and for PPF were -4.3% (placebo), -2.9% (30-mg), and -1.1% (60-mg). Treatment differences between 60-mg admilparant and placebo were 1.4% (95% CI, -0.1 to 3.0) for IPF and 3.2% (95% CI, 0.7 to 5.7) for PPF. Treatment effect was observed with or without background antifibrotics in both cohorts. Diarrhea occurred at similar frequencies in admilparant arms versus placebo. Transient day 1 post-dose blood pressure reductions were observed in all arms in both cohorts but greater with admilparant. Treatment discontinuations due to adverse events were similar across IPF arms and lower with admilparant (2.5% [30-mg]; 0% [60-mg]) versus placebo (17.1%) for PPF. CONCLUSIONS: In this first phase 2 study to evaluate antifibrotic treatment in parallel IPF and PPF cohorts, 60-mg admilparant slowed lung function decline and was safe and well tolerated, supporting further evaluation in phase 3 trials. Clinical trial registration available at www. CLINICALTRIALS: gov, ID: NCT04308681.
RESUMEN
BACKGROUND AND AIMS: Mineralocorticoid receptor antagonists (MRAs) improve cardiovascular outcomes in a variety of settings. This study aimed to assess whether cardioprotective effects of MRAs are modified by heart failure (HF) and atrial fibrillation (AF) status and to study their impact on AF events. METHODS: MEDLINE, Embase, and Cochrane Central databases were searched to 24 March 2023 for randomized controlled trials evaluating the efficacy of MRAs as compared with placebo or usual care in reducing cardiovascular outcomes and AF events in patients with or at risk for cardiovascular diseases. Random-effects models and interaction analyses were used to test for effect modification. RESULTS: Meta-analysis of seven trials (20 741 participants, mean age: 65.6 years, 32% women) showed that the efficacy of MRAs, as compared with placebo, in reducing a composite of cardiovascular death or HF hospitalization remains consistent across patients with HF [risk ratio = 0.81; 95% confidence interval (CI): 0.67-0.98] and without HF (risk ratio = 0.84; 95% CI: 0.75-0.93; interaction P = .77). Among patients with HF, MRAs reduced cardiovascular death or HF hospitalization in patients with AF (hazard ratio = 0.95; 95% CI: 0.54-1.66) to a similar extent as in those without AF (hazard ratio = 0.82; 95% CI: 0.63-1.07; interaction P = .65). Pooled data from 20 trials (21 791 participants, mean age: 65.2 years, 31.3% women) showed that MRAs reduce AF events (risk ratio = 0.76; 95% CI: 0.67-0.87) in both patients with and without prior AF. CONCLUSIONS: Mineralocorticoid receptor antagonists are similarly effective in preventing cardiovascular events in patients with and without HF and most likely retain their efficacy regardless of AF status. Mineralocorticoid receptor antagonists may also be moderately effective in preventing incident or recurrent AF events.
Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Anciano , Femenino , Humanos , Masculino , Fibrilación Atrial/complicaciones , Fibrilación Atrial/tratamiento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Ensayos Clínicos como AsuntoRESUMEN
BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.
Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Trampas Extracelulares , Leucotrieno C4 , Daño por Reperfusión Miocárdica , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Benzamidas , Benzodioxoles , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Antagonistas de Leucotrieno/farmacología , Antagonistas de Leucotrieno/uso terapéutico , Leucotrieno C4/antagonistas & inhibidores , Leucotrieno C4/metabolismo , Ratones Noqueados , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Neutrófilos/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Infarto del Miocardio con Elevación del ST/metabolismoRESUMEN
Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.