Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(4): 721-736.e10, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33725478

RESUMEN

Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Estrés Fisiológico/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/inmunología , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/inmunología , Unión Proteica/inmunología
2.
Semin Immunol ; 67: 101766, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141766

RESUMEN

The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Péptidos , Humanos , Péptidos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(25): e2304055120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37310998

RESUMEN

The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (ß2 microglobulin, ß2m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/ß2m interface, to generate conformationally stable, peptide-receptive molecules named "open MHC-I." Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type when loaded with low- to moderate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in ß2m-interacting sites of the peptide-binding groove to long-range effects on the α2-1 helix and α3 domain. The interchain disulfide bond stabilizes MHC-I molecules in an open conformation to promote peptide exchange across multiple human leukocyte antigen (HLA) allotypes, covering representatives from five HLA-A supertypes, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structure-guided design, combined with conditional ß-peptide ligands, provides a universal platform to generate ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires covering highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Antígenos de Histocompatibilidad , Humanos , Péptidos/genética , Complejo Mayor de Histocompatibilidad , Epítopos , Disulfuros
4.
J Biol Chem ; 299(10): 105136, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543367

RESUMEN

Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved ß2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.


Asunto(s)
Presentación de Antígeno , Pollos , Antígenos HLA-B , Proteínas de Transporte de Membrana , Chaperonas Moleculares , Animales , Humanos , Antígenos HLA-B/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Epítopos/metabolismo , Ingeniería de Proteínas
5.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474030

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Macrófagos Alveolares/metabolismo , Proteómica/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem
6.
Immunol Cell Biol ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982599

RESUMEN

Scientific outreach activities play an important role in disseminating knowledge, connecting the general public to research and breaking down scientific skepticism barriers. However, the vision-impaired community is often disadvantaged when the most common audio-visual approach of scientific communication is applied. Here we integrated tactile clues in the scientific communication of immune processes involved in the autoimmune skin disease psoriasis. We fostered the involvement of the vision-impaired community through interactive experiences, including tactile scientific origami art, a haptic poster and wood-carved molecular models. Readily accessible science communication that engages a number of senses is a critical step toward making science more inclusive and engaging for individuals with a wide range of sensory abilities. The approach of the 2023 Monash Sensory Science exhibition aligns with the principles of equity, diversity and inclusion and helps to empower a more informed and scientifically literate public.

7.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686141

RESUMEN

The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition.


Asunto(s)
Genes MHC Clase I , Espondilitis Anquilosante , Humanos , Haplotipos , Antígenos HLA-B/genética , Linfocitos T CD8-positivos , Epítopos , Espondilitis Anquilosante/genética , Aminopeptidasas/genética , Antígenos de Histocompatibilidad Menor/genética
8.
J Biol Chem ; 296: 100443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617882

RESUMEN

Polymorphic variation of immune system proteins can drive variability of individual immune responses. Endoplasmic reticulum aminopeptidase 1 (ERAP1) generates antigenic peptides for presentation by major histocompatibility complex class I molecules. Coding SNPs in ERAP1 have been associated with predisposition to inflammatory rheumatic disease and shown to affect functional properties of the enzyme, but the interplay between combinations of these SNPs as they exist in allotypes has not been thoroughly explored. We used phased genotype data to estimate ERAP1 allotype frequency in 2504 individuals across five major human populations, generated highly pure recombinant enzymes corresponding to the ten most common ERAP1 allotypes, and systematically characterized their in vitro enzymatic properties. We find that ERAP1 allotypes possess a wide range of enzymatic activities, up to 60-fold, whose ranking is substrate dependent. Strikingly, allotype 10, previously associated with Behçet's disease, is consistently a low-activity outlier, suggesting that a significant percentage of individuals carry a subactive ERAP1 gene. Enzymatic analysis revealed that ERAP1 allotypes can differ in both catalytic efficiency and substrate affinity, differences that can change intermediate accumulation in multistep trimming reactions. Alterations in efficacy of an allosteric inhibitor that targets the regulatory site suggest that allotypic variation influences the communication between the regulatory and the active site. Our work defines the wide landscape of ERAP1 activity in human populations and demonstrates how common allotypes can induce substrate-dependent variability in antigen processing, thus contributing, in synergy with major histocompatibility complex haplotypes, to immune response variability and predisposition to chronic inflammatory conditions.


Asunto(s)
Aminopeptidasas/inmunología , Aminopeptidasas/metabolismo , Antígenos de Histocompatibilidad Menor/inmunología , Antígenos de Histocompatibilidad Menor/metabolismo , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Aminopeptidasas/genética , Presentación de Antígeno/inmunología , Antígenos/genética , Antígenos/inmunología , Bases de Datos Genéticas , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Genotipo , Haplotipos/genética , Haplotipos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/genética , Péptidos/metabolismo , Polimorfismo de Nucleótido Simple
9.
Biochem Biophys Res Commun ; 632: 189-194, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36228519

RESUMEN

Autoimmune diseases afflict nearly 10% of the world's population and have a serious impact on survival and quality of life. Unfortunately, the specific pathogenesis of almost all autoimmune diseases is still unclear, with more research findings identifying some key pathogenic genes at the genetic level and several pathogenic inflammatory factor phenotypes. ERAP1 has been suggested as a potential therapeutic target for several autoimmune diseases, especially MHC-Ⅰ related. How the structure and antigenic peptide processing function of ERAP1 affect the pathogenesis of these autoimmune diseases needs to be elucidated more clearly. Genetic studies on single nucleotide polymorphism of ERAP1 provide a good bridge to better understand the relationship and pattern between ERAP1 structure, function, and disease. However, existing reviews have focused on the genetic association of ERAP1 SNPs with autoimmune diseases, and no one has specifically addressed how ERAP1 gene polymorphisms embodied at the protein level specifically mediate antigenic peptide editing and the development of multiple autoimmune diseases. In this paper, we present a comprehensive review of these ERAP1 SNPs associated with multiple autoimmune diseases, in particular the polymorphisms affecting their protein structure and enzyme function, and attempt to unravel the underlying structural and biochemical mechanisms by which ERAP1 affects the pathogenesis of multiple autoimmune diseases through the SNP-protein structure-function-disease relationship. This study will provide theoretical help and ideas for understanding the relationship between ERAP1 and autoimmune diseases and for drug design targeting wild-type and mutant proteins with different polymorphisms.


Asunto(s)
Aminopeptidasas , Enfermedades Autoinmunes , Antígenos de Histocompatibilidad Menor , Humanos , Aminopeptidasas/química , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Enfermedades Autoinmunes/genética , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/química , Proteínas Mutantes/genética , Péptidos/genética , Polimorfismo de Nucleótido Simple
10.
Immunol Cell Biol ; 100(2): 112-126, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34940995

RESUMEN

MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T-cell receptor (TCR), which recognizes MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumor cells and appear to recognize MR1 in association with tumor-derived self-antigens, though the identity of these antigens remains unclear. Here, we have used TCR gene transfer and engineered MR1-expressing antigen-presenting cells to probe the MR1 restriction and antigen reactivity of a range of MR1-restricted TCRs, including model tumor-reactive TCRs. We confirm MR1 reactivity by these TCRs, show differential dependence on lysine at position 43 of MR1 (K43) and demonstrate competitive inhibition by the MR1 ligand 6-formylpterin. TCR-expressing reporter lines, however, failed to recapitulate the robust tumor specificity previously reported, suggesting an importance of accessory molecules for MR1-dependent tumor reactivity. Finally, MR1-mutant cell lines showed that distinct residues on the α1/α2 helices were required for TCR binding by different MR1-restricted T cells and suggested central but distinct docking modes by the broad family of MR1-restricted αß TCRs. Collectively, these data are consistent with recognition of distinct antigens by diverse MR1-restricted T cells.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Receptores de Antígenos de Linfocitos T alfa-beta , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética
11.
Bioessays ; 42(3): e1900200, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958157

RESUMEN

The vertebrate immune system uses an impressive arsenal of mechanisms to combat harmful cellular states such as infection. One way is via cells delivering real-time snapshots of their protein content to the cell surface in the form of short peptides. Specialized immune cells (T cells) sample these peptides and assess whether they are foreign, warranting an action such as destruction of the infected cell. The delivery of peptides to the cell surface is termed antigen processing and presentation, and decades of research have provided unprecedented understanding of this process. However, predicting the capacity for a given peptide to be immunogenic-to elicit a T cell response-has remained both enigmatic and a long sought-after goal. In the era of big data, a point is being approached where the steps of antigen processing and presentation can be quantified and assessed against peptide immunogenicity in order to build predictive models. This review presents new findings in this area and contemplates challenges ahead.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología
12.
BMC Bioinformatics ; 22(1): 405, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404349

RESUMEN

BACKGROUND: The human leukocyte antigen (HLA) proteins play a fundamental role in the adaptive immune system as they present peptides to T cells. Mass-spectrometry-based immunopeptidomics is a promising and powerful tool for characterizing the immunopeptidomic landscape of HLA proteins, that is the peptides presented on HLA proteins. Despite the growing interest in the technology, and the recent rise of immunopeptidomics-specific identification pipelines, there is still a gap in data-analysis and software tools that are specialized in analyzing and visualizing immunopeptidomics data. RESULTS: We present the IPTK library which is an open-source Python-based library for analyzing, visualizing, comparing, and integrating different omics layers with the identified peptides for an in-depth characterization of the immunopeptidome. Using different datasets, we illustrate the ability of the library to enrich the result of the identified peptidomes. Also, we demonstrate the utility of the library in developing other software and tools by developing an easy-to-use dashboard that can be used for the interactive analysis of the results. CONCLUSION: IPTK provides a modular and extendable framework for analyzing and integrating immunopeptidomes with different omics layers. The library is deployed into PyPI at https://pypi.org/project/IPTKL/ and into Bioconda at https://anaconda.org/bioconda/iptkl , while the source code of the library and the dashboard, along with the online tutorials are available at https://github.com/ikmb/iptoolkit .


Asunto(s)
Análisis de Datos , Programas Informáticos , Antígenos de Histocompatibilidad Clase I , Humanos , Espectrometría de Masas , Péptidos
13.
J Cell Mol Med ; 25(14): 7001-7012, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34137173

RESUMEN

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in many deaths throughout the world. It is vital to identify the novel prognostic biomarkers and therapeutic targets to assist with the subsequent diagnosis and treatment plan to mitigate the expansion of COVID-19. Since angiotensin-converting enzyme 2 (ACE2)-positive cells are hosts for COVID-19, we focussed on this cell type to explore the underlying mechanisms of COVID-19. In this study, we identified that ACE2-positive cells from the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 belong to bronchial epithelial cells. Comparing with patients of COVID-19 showing severe symptoms, the antigen processing and presentation pathway was increased and 12 typical genes, HLA-DRB5, HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, HSP90AA1, HSP90AB1, HLA-DPB1, HLA-DQB1, HLA-DQA2, and HLA-DMA, particularly HLA-DPB1, were obviously up-regulated in ACE2-positive bronchial epithelial cells of patients with mild disease. We further discovered SDCBP was positively correlated with above 12 genes particularly with HLA-DPB1 in ACE2-positive bronchial epithelial cells of COVID-19 patients. Moreover, SDCBP may increase the immune infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in different lung carcinoma. Moreover, we found the expression of SDCBP was positively correlated with the expression of antigen processing and presentation genes in post-mortem lung biopsies tissues, which is consistent with previous discoveries. These results suggest that SDCBP has good potential to be further developed as a novel diagnostic and therapeutic target in the treatment of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Bronquios/patología , COVID-19/patología , Células Epiteliales/metabolismo , RNA-Seq , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Sinteninas/metabolismo , Presentación de Antígeno/genética , Líquido del Lavado Bronquioalveolar , COVID-19/genética , COVID-19/metabolismo , Células Epiteliales/patología , Perfilación de la Expresión Génica , Humanos , Cambios Post Mortem , SARS-CoV-2/fisiología , Regulación hacia Arriba/genética
14.
Eur J Immunol ; 49(2): 255-265, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30467836

RESUMEN

Invariant natural killer T (iNKT) cells play critical roles in autoimmune, anti-tumor, and anti-microbial immune responses, and are activated by glycolipids presented by the MHC class I-like molecule, CD1d. How the activation of signaling pathways impacts antigen (Ag)-dependent iNKT cell activation is not well-known. In the current study, we found that the MAPK JNK2 not only negatively regulates CD1d-mediated Ag presentation in APCs, but also contributes to CD1d-independent iNKT cell activation. A deficiency in the JNK2 (but not JNK1) isoform enhanced Ag presentation by CD1d. Using a vaccinia virus (VV) infection model known to cause a loss in iNKT cells in a CD1d-independent, but IL-12-dependent manner, we found the virus-induced loss of iNKT cells in JNK2 KO mice was substantially lower than that observed in JNK1 KO or wild-type (WT) mice. Importantly, compared to WT mice, JNK2 KO mouse iNKT cells were found to express less surface IL-12 receptors. As with a VV infection, an IL-12 injection also resulted in a smaller decrease in JNK2 KO iNKT cells as compared to WT mice. Overall, our work strongly suggests JNK2 is a negative regulator of CD1d-mediated Ag presentation and contributes to IL-12-induced iNKT cell activation and loss during viral infections.


Asunto(s)
Antígenos CD1d/inmunología , Activación de Linfocitos , Proteína Quinasa 9 Activada por Mitógenos/inmunología , Células T Asesinas Naturales/inmunología , Animales , Antígenos CD1d/genética , Femenino , Interleucina-12/genética , Interleucina-12/inmunología , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/genética , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/inmunología , Virosis/genética , Virosis/inmunología
15.
Proteomics ; 18(12): e1800110, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29791771

RESUMEN

Minimal information about an immuno-peptidomics experiment (MIAIPE) is an initiative of the members of the Human Immuno-Peptidome Project (HIPP), an international program organized by the Human Proteome Organization (HUPO). The aim of the MIAIPE guidelines is to deliver technical guidelines representing the minimal information required to sufficiently support the evaluation and interpretation of immunopeptidomics experiments. The MIAIPE document has been designed to report essential information about sample preparation, mass spectrometric measurement, and associated mass spectrometry (MS)-related bioinformatics aspects that are unique to immunopeptidomics and may not be covered by the general proteomics MIAPE (minimal information about a proteomics experiment) guidelines.


Asunto(s)
Biología Computacional/normas , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/metabolismo , Proteómica/normas , Programas Informáticos , Manejo de Especímenes/normas , Bases de Datos de Proteínas , Antígenos de Histocompatibilidad Clase I/análisis , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/análisis , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología
16.
Immunol Cell Biol ; 96(2): 137-148, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29363167

RESUMEN

Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.


Asunto(s)
Presentación de Antígeno/inmunología , Virus de la Viruela Vacuna/metabolismo , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Endocitosis , Monocitos/citología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Endosomas/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Péptidos/metabolismo , Dominios Proteicos , Solubilidad , Proteínas Virales/química
17.
Proc Natl Acad Sci U S A ; 112(33): 10449-54, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240324

RESUMEN

MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.


Asunto(s)
Células Presentadoras de Antígenos/citología , Antígenos de Histocompatibilidad Clase II/química , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitina/química , Animales , Presentación de Antígeno , Linfocitos B/citología , Linfocitos T CD4-Positivos/citología , Células Dendríticas/citología , Endocitosis , Lipopolisacáridos/química , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/química , Ubiquitina-Proteína Ligasas/genética
18.
Immunology ; 150(1): 16-24, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27658710

RESUMEN

The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8+ cytotoxic and CD4+ helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8+ cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4+ T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8+ cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Animales , Citotoxicidad Inmunológica , Humanos , Inmunomodulación , Escape del Tumor
19.
Immunogenetics ; 69(8-9): 617-630, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28695285

RESUMEN

Genetic polymorphism in the genes encoding the human leukocyte antigen (HLA) molecules enables presentation of a wide range peptide ligands thus maximising immune surveillance of pathogens. A consequence of the diversification of the HLA Ag-binding pocket is the enhanced opportunity for off-target binding of small drugs by HLA molecules, with subsequent immune reactivity. These potential off-target interactions are 'set up' to generate T cell-mediated adverse drug reactions even though the precise mechanisms of most HLA-drug interactions are still poorly understood. The association between abacavir hypersensitivity syndrome and HLA-B*57:01 is one exception that has been resolved at a molecular and mechanistic level. Here, we explore the road to understanding the interaction between abacavir and the HLA-B*57:01 molecule and review the current state of understanding of interactions between other drugs and HLA molecules implicated in adverse drug reactions, which appear to involve multiple mechanisms. The continued expansion of the pharmacopoeia generates an imperative to understand these interactions at the molecular level in order to prevent the continued burden on individuals and the health care system.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Antígenos HLA/genética , Farmacogenética , Alopurinol/efectos adversos , Carbamazepina/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Haptenos/inmunología , Humanos , Polimorfismo Genético
20.
J Allergy Clin Immunol ; 137(5): 1525-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26559323

RESUMEN

BACKGROUND: The search for intrinsic factors, which account for a protein's capability to act as an allergen, is ongoing. Fold stability has been identified as a molecular feature that affects processing and presentation, thereby influencing an antigen's immunologic properties. OBJECTIVE: We assessed how changes in fold stability modulate the immunogenicity and sensitization capacity of the major birch pollen allergen Bet v 1. METHODS: By exploiting an exhaustive virtual mutation screening, we generated mutants of the prototype allergen Bet v 1 with enhanced thermal and chemical stability and rigidity. Structural changes were analyzed by means of x-ray crystallography, nuclear magnetic resonance, and molecular dynamics simulations. Stability was monitored by using differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy. Endolysosomal degradation was simulated in vitro by using the microsomal fraction of JAWS II cells, followed by liquid chromatography coupled to mass spectrometry. Immunologic properties were characterized in vitro by using a human T-cell line specific for the immunodominant epitope of Bet v 1 and in vivo in an adjuvant-free BALB/c mouse model. RESULTS: Fold stabilization of Bet v 1 was pH dependent and resulted in resistance to endosomal degradation at a pH of 5 or greater, affecting presentation of the immunodominant T-cell epitope in vitro. These properties translated in vivo into a strong allergy-promoting TH2-type immune response. Efficient TH2 cell activation required both an increased stability at the pH of the early endosome and efficient degradation at lower pH in the late endosomal/lysosomal compartment. CONCLUSIONS: Our data indicate that differential pH-dependent fold stability along endosomal maturation is an essential protein-inherent determinant of allergenicity.


Asunto(s)
Alérgenos/química , Antígenos de Plantas/química , Alérgenos/genética , Alérgenos/inmunología , Animales , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Endosomas , Femenino , Concentración de Iones de Hidrógeno , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Mutación , Polen/inmunología , Pliegue de Proteína , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA