Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nano Lett ; 24(30): 9262-9268, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39017592

RESUMEN

We use low-dose cryogenic transmission electron microscopy (cryo-TEM) to investigate the atomic-scale structure of antiperovskite Na2NH2BH4 crystals by preserving the room-temperature cubic phase and carefully monitoring the electron dose. Via quantitative analysis of electron beam damage using selected area electron diffraction, we find cryogenic imaging provides 6-fold improvement in beam stability for this solid electrolyte. Cryo-TEM images obtained from flat crystals revealed the presence of a new, long-range-ordered supercell with a cubic phase. The supercell exhibits doubled unit cell dimensions of 9.4 Å × 9.4 Å as compared to the cubic lattice structure revealed by X-ray crystallography of 4.7 Å × 4.7 Å. The comparison between the experimental image and simulated potential map indicates the origin of the supercell is a vacancy ordering of sodium atoms. This work demonstrates the potential of using cryo-TEM imaging to study the atomic-scale structure of air- and electron-beam-sensitive antiperovskite-type solid electrolytes.

2.
Small ; 20(23): e2311599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38214434

RESUMEN

Zero thermal coefficients of resistivity (ZTCR) materials exhibit minimal changes in resistance with temperature variations, making them essential in modern advanced technologies. The current ZTCR materials, which are based on the resistivity saturation effect of heavy metals, tend to function at elevated temperatures because the mean free path approaches the lower limit of the semiclassical Boltzmann theory when the temperature is sufficiently high. ZTCR materials working at low-temperatures are difficult to achieve due to electron-phonon scattering, which results in increased resistivity according to Bloch's theory. In this work, the ZTCR behavior at low-temperatures is realized in pre-microstrained Mn3NiN. The delicate balance between the resistivity contribution from electron-phonon scattering and spin-wave mediated weak localization is well revealed. A remarkable temperature coefficient of resistivity (TCR) value as low as 1.9 ppm K-1 (50 K ≤ T ≤ 200 K) is obtained, which is significantly superior to the threshold value of ZTCR behavior and the application standard of commercial ZTCR materials. The demonstration provides a unique paradigm in the design of ZTCR materials through the contraction effects of two opposite conductance mechanisms with positive and negative thermal coefficients of resistivity.

3.
Angew Chem Int Ed Engl ; 62(51): e202314444, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37902095

RESUMEN

The sodium-rich antiperovskites (NaRAPs) with composition Na3 OB (B=Br, Cl, I, BH4 , etc.) are a family of materials that has recently attracted great interest for application as solid electrolytes in sodium metal batteries. Non-Arrhenius ionic conductivities have been reported for these materials, the origin of which is poorly understood. In this work, we combined temperature-resolved bulk and local characterisation methods to gain an insight into the origin of this unusual behaviour using Na3 OBr as a model system. We first excluded crystallographic disorder on the anion sites as the cause of the change in activation energy; then identified the presence of a poorly crystalline impurities, not detectable by XRD, and elucidated their effect on ionic conductivity. These findings improve understanding of the processing-structure-properties relationships pertaining to NaRAPs and highlight the need to determine these relationships in other materials systems, which will accelerate the development of high-performance solid electrolytes.

4.
Small ; 18(12): e2105906, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35098651

RESUMEN

Intrinsic hydrogen evolution reaction (HER) activity and the mechanism of antiperovskite Ni3 In1-x Cux N bulk cubic particles and multi-crystalline nanoplates are thoroughly investigated. Stoichiometric Ni3 In0.6 Cu0.4 N reaches the best HER performance, with an overpotential of 102 mV in its multi-crystalline nanoplates obtained from the LDH-derived method, and 143 mV in its bulk cubic particles from the citric method. DFT calculation reveals that Ni-In or Ni-Cu paired on the (100) plane serve as primary active sites. The Ni-Cu pair exhibits stronger OH* and H* affinity that correspondingly reduce OH* and H* adsorption free energy. Introducing specific amounts of the Ni-Cu pair, that is In:Cu = 0.6:0.4 in Ni3 In0.6 Cu0.4 N, can optimize OH* and H* adsorption free energy to facilitate water dissociation in the HER process, while avoiding OH* adsorption getting too strong to block active sites. Besides, Ni3 In0.6 Cu0.4 N turns the water adsorption step spontaneous, which may be attributed to the shifted d-band center and polarizing effect from surface In-Cu charge distribution. This work expands the scope for material design in an antiperovskite system by tailoring the chemical components and morphology for optimal reaction free energy and performance.

5.
Small ; 16(31): e2002089, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32602259

RESUMEN

Spinel and perovskite with distinctive crystal structures are two of the most popular material families in electrocatalysis, which, however, usually show poor conductivity, causing a negative effect on the charge transfer process during electrochemical reactions. Herein, a highly conductive inverse spinel (Fe3 O4 ) and anti-perovskite (Ni3 FeN) hetero-structured nanocomposite is reported as a superior oxygen evolution electrocatalyst, which can be facilely prepared based on a one-pot synthesis strategy. Thanks to the strong hybridization between Ni/Fe 3d and N 2p orbitals, the Ni3 FeN is easily transformed into NiFe (oxy)hydroxide as the real active species during the oxygen evolution reaction (OER) process, while the Fe3 O4 component with low O-p band center relative to Fermi level is structurally stable. As a result, both high surface reactivity and bulk electronic transport ability are reached. By directly growing Fe3 O4 /Ni3 FeN heterostructure on freestanding carbon fiber paper and testing based on the three-electrode configuration, it requires only 160 mV overpotential to deliver a current density of 30 mA cm-2 for OER. Also, negligible performance decay is observed within a prolonged test period of 100 h. This work sheds light on the rational design of novel heterostructure materials for electrocatalysis.

6.
Small ; 16(51): e2006800, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33251694

RESUMEN

Exploring active, stable, and low-cost bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is crucial for water splitting technology associated with renewable energy storage in the form of hydrogen fuel. Here, a newly designed antiperovskite-based hybrid composed of a conductive InNNi3 core and amorphous InNi(oxy)hydroxide shell is first reported as promising OER/HER bifunctional electrocatalyst. Prepared by a facile electrochemical oxidation strategy, such unique hybrid (denoted as EO-InNNi3 ) exhibits excellent OER and HER activities in alkaline media, benefiting from the inherent high-efficiency HER catalytic nature of InNNi3 antiperovskite and the promoting role of OER-active InNi(oxy)hydroxide thin film, which is confirmed by theoretical simulations and in situ Raman studies. Moreover, an alkaline electrolyzer integrated EO-InNNi3 as both anode and cathode delivers a low voltage of 1.64 V at 10 mA cm-2 , while maintaining excellent durability. This work demonstrates the application of antiperovskite-based materials in the field of overall water splitting and inspires insights into the development of advanced catalysts for various energy applications.

7.
Angew Chem Int Ed Engl ; 59(1): 167-171, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31670443

RESUMEN

Substitution of A-site and/or X-site ions of ABX3 -type perovskites with organic groups can give rise to hybrid perovskites, many of which display intriguing properties beyond their parent compounds. However, this method cannot be extended effectively to hybrid antiperovskites. Now, the design of hybrid antiperovskites under the guidance of the concept of Goldschmidt's tolerance factor is presented. Spherical anions were chosen for the A and B sites and spherical organic cations for the X site, and seven hybrid antiperovskites were obtained, including (F3 (H2 O)x )(AlF6 )(H2 dabco)3 , ((Co(CN)6 )(H2 O)5 )(MF6 )(H2 dabco)3 (M=Al3+ , Cr3+ , or In3+ ), (Co(CN)6 )(MF6 )(H2 pip)3 (M=Al3+ or Cr3+ ), and (SbI6 )(AlF6 )(H2 dabco)3 . These new structures reveal that all ions at A, B, and X sites of inorganic antiperovskites can be replaced by molecular ions to form hybrid antiperovskites. This work will lead to the synthesis of a large family of hybrid antiperovskites.

8.
Angew Chem Int Ed Engl ; 59(5): 1871-1877, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31746538

RESUMEN

Antiperovskite Co3 InC0.7 N0.3 nanomaterials with highly enhanced oxygen reduction reaction (ORR) performance were prepared by tuning nitrogen contents through a metal-organic framework (MOF)-derived strategy. The nanomaterial surpasses all reported noble-metal-free antiperovskites and even most perovskites in terms of onset potential (0.957 V at J=0.1 mA cm-2 ) and half-wave potential (0.854 V). The OER and zinc-air battery performance demonstrate its multifunctional oxygen catalytic activities. DFT calculation was performed and for the first time, a 4 e- dissociative ORR pathway on (200) facets of antiperovskite was revealed. Free energy studies showed that nitrogen substitution could strengthen the OH desorption as well as hydrogenation that accounts for the enhanced ORR performance. This work expands the scope for material design via tailoring the nitrogen contents for optimal reaction free energy and hence performance of the antiperovskite system.

9.
Angew Chem Int Ed Engl ; 57(37): 11939-11942, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30035344

RESUMEN

The perovskite structure is rich in ferroelectricity. In contrast, ferroelectric antiperovskites have been scarcely confirmed experimentally since the discovery of M3 AB-type antiperovskites in the 1930s. Ferroelectricity is now revealed in an organic-inorganic hybrid X3 AB antiperovskite structure, which exhibits a clear ferroelectric phase transition 6/mmmF6mm with a high Curie point of 480 K. The physical properties across the phase transition are obviously changed along with the symmetry requirements, providing solid experimental evidence for the ferroelectric phase transition. More interestingly, the discovered antiperovskite shows intense photoluminescence and triboluminescence properties. The confirmation of the triboluminescent ferroelectric antiperovskite will open new avenues to explore excellent optoelectronic properties in the antiperovskite family.

10.
Angew Chem Int Ed Engl ; 55(32): 9380-3, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27309149

RESUMEN

Small, red Fe2 SeO single crystals in two modifications were obtained from a CsCl flux. The metastable α-phase is pseudo-tetragonal (Cmce, a=16.4492(8) Å, b=11.1392(4) Å, c=11.1392(4) Å), whereas the ß-phase is trigonal (P31 , a=9.8349(4) Å, c=6.9591(4) Å)) and thermodynamically stable within a narrow temperature range. Both crystal structures were solved from twinned specimens. The enantiomers of the ß-phase appear as racemic mixtures. Selenium and oxygen form two individual interpenetrating primitive cubic lattices, giving a bcc packing. A quasi-octahedrally coordinated iron atom is found close to the center of each surface of the selenium sublattice. The difference between the α- and ß-phases is the distribution of iron at 2/3 of the surfaces. α- and ß-Fe2 SeO are comparable with metal-vacancy-ordered antiperovskites. Each Fe/O lattice can also be described in terms of vertex-sharing OFe4 tetrahedra, with a crystal structure similar to that of an antisilicate. Iron is divalent and has a high-spin d(6) (S=2) configuration. The ß-phase exhibits magnetoelectric coupling.

11.
ACS Appl Mater Interfaces ; 16(31): 40873-40880, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39078059

RESUMEN

Lithium-rich antiperovskites promise to be a compelling class of high-capacity cathode materials due to the existence of both cationic and anionic redox activity. Little is however known about the effect of separating the electrochemical cationic process from the anionic process and the associated implications on the electrochemical performance. In this context, we report the electrochemical properties of the illustrative example of three different (Li2Fe)SO materials with a focus on separating cationic from anionic effects. With the high-voltage anionic process, an astonishing electrochemical capacity of around 400 mAh g-1 can initially be reached. Our results however identify the anionic process as the cause of poor cycling stability and demonstrate that the fading reported in previous literature is avoided by restricting to only the cationic processes. Following this path, our (Li2Fe)SO-BM500 shows strongly improved performance as indicated by constant electrochemical cycling over 100 cycles at a capacity of around 175 mAh g-1 at 1 C. Our approach also allows us to investigate the electrochemical performance of the bare antiperovskite phase excluding extrinsic activity from initial or cycling-induced impurity phases. Our results underscore that synthesis conditions are a critical determinant of electrochemical performance in lithium-rich antiperovskites, especially with regard to the amount of electrochemical secondary phases, while the particle size has not been found to be a crucial parameter. Overall, separating and understanding the effects of the cationic from the anionic redox activity in lithium-rich antiperovskites provides the route to further improve their performance in electrochemical energy storage.

12.
Heliyon ; 10(9): e30634, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742078

RESUMEN

The increasing global prevalence of the parasitic vector-borne disease leishmaniasis combined with rising resistance to current therapeutics necessitates the search for novel approaches to combat leishmania. This study evaluates the effects of novel strontium-based oxyfluorides for potential therapeutic use by testing cultures of Leishmania tarentolae, a species of Leishmania found in reptiles, as a model species. Cells were cultured with a range of mixed metal strontium oxyfluoride compounds selected to systematically test the relationship between compound structure and cell viability and enzyme activity over time.

13.
Adv Mater ; 35(12): e2210365, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36583712

RESUMEN

Lithium-rich antiperovskites (LiRAPs) solid electrolytes have attracted extensive interest due to their advantages of structural tunability, mechanical flexibility, and low cost. However, LiRAPs are instinctively hygroscopic and suffer from decomposition in air, which not only diversifies their electrochemical performances in present reports but also hinders their application in all-solid-state lithium batteries (ASSLBs). Herein, the origin of the hygroscopicity, and also the effect of the hygroscopicity on the electrochemical performances of Li3-x (OHx )Cl are systematically investigated. Li3-x (OHx )Cl is demonstrated to be unstable in the air and prone to decompose into LiOH and LiCl. Nevertheless, with fluorine doping on chlorine sites, the hygroscopicity of LiRAPs is suppressed by weakening the intermolecular hydrogen bond between LiRAPs and H2 O, forming a moisture-resistive Li3-x (OHx )Cl0.9 F0.1 . Taking advantage of its low melting point (274 °C), two prototypes of ASSLBs are assembled in the ambient air by means of co-coating sintering and melt-infiltration. With LiRAPs as the solder, low-temperature sintering of the ASSLBs with low interfacial resistance is demonstrated as feasible. The understanding of the hygroscopic behavior of LiRAPs and the integration of the moisture-resistive LiRAPs with ASSLBs provide an effective way toward the fabrication of the ASSLBs.

14.
Angew Chem Weinheim Bergstr Ger ; 135(51): e202314444, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38516325

RESUMEN

The sodium-rich antiperovskites (NaRAPs) with composition Na3OB (B=Br, Cl, I, BH4, etc.) are a family of materials that has recently attracted great interest for application as solid electrolytes in sodium metal batteries. Non-Arrhenius ionic conductivities have been reported for these materials, the origin of which is poorly understood. In this work, we combined temperature-resolved bulk and local characterisation methods to gain an insight into the origin of this unusual behaviour using Na3OBr as a model system. We first excluded crystallographic disorder on the anion sites as the cause of the change in activation energy; then identified the presence of a poorly crystalline impurities, not detectable by XRD, and elucidated their effect on ionic conductivity. These findings improve understanding of the processing-structure-properties relationships pertaining to NaRAPs and highlight the need to determine these relationships in other materials systems, which will accelerate the development of high-performance solid electrolytes.

15.
Materials (Basel) ; 15(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431495

RESUMEN

The structural, electrical, and magneto-elastic properties of lanthanide base nitride (Ln = Dy-Lu) anti-perovskites were investigated using density functional theory (DFT). The reported structural outcomes are consistent with the experiment and decrease from Dy to Lu due to the decrease ofatomic radii of Ln atoms. According to the electronic band profile, the metallic characteristics of these compounds are due to the crossing over of Ln-f states at the Fermi level and are also supported by electrical resistivity. The resistivity of these compounds at room temperature demonstrates that they are good conductors. Their mechanical stability, anisotropic, load-bearing, and malleable nature are demonstrated by their elastic properties. Due to their metallic and load-bearing nature, in addition to their ductility, these materials are suitable as active biomaterials, especially when significant acting loads are anticipated, such as those experienced by such heavily loaded implants as hip and knee endo-prostheses, plates, screws, nails, dental implants, etc. In thesecases, appropriate bending fatigue strength is required in structural materials for skeletal reconstruction. Magnetic properties show that all compounds are G-type anti-ferromagnetic, with the Neel temperatures ranging from 24 to 48 K, except Lu3Nin, which is non-magnetic. Due to their anti-ferromagnetic structure, magnetic probes cannot read data contained in anti-ferromagnetic moments, therefore, data will be unchanged by disrupted magnetic field. As a result, these compounds can be the best candidates for magnetic cloaking devices.

16.
ACS Appl Mater Interfaces ; 14(1): 1149-1156, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34930009

RESUMEN

The oxide-based all ceramic lithium battery (ACLB) is regarded as one of the safest secondary batteries because it is incombustible and free of toxic gas release. However, high temperature sintering is a necessary step to fabricate the solid-state electrolytes (SSEs) membranes and improve the cathode/SSEs interfacial contact, which bring in high energy consumption as well as the formation of Li-ion resistive interdiffusion phases. Here, we report an in situ coating of lithium-rich antiperovskites (LiRAPs) as sintering aids to solder LiCoO2 (LCO) active material and Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolyte. Due to the low melting point of LiRAPs (273.2 °C), all particles were compactly soldered to simultaneously densify the electrolyte membrane and reinforce the cathode/electrolyte contact, thus lowing the sintering temperature of ACLB from over 600 °C to only 290 °C. The interfacial resistance of cathode/electrolyte was reduced from 15 288 to 817 Ω/cm2 due to the high ionic conductivity of LiRAPs and the interdiffusion phases prohibition. Moreover, the outstanding ductility of LiRAPs also mitigated the strain/stress of the LCO/LATP interface, which lead to improved cycling stability. These results not only provide a rational design to the cathode/SSEs interface but also deliver a practical stacking process to speeding up the industrialization of ACLB.

17.
Adv Mater ; 33(37): e2102958, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34319623

RESUMEN

Inverted structures of common crystal lattices, referred to as antistructures, are rare in nature due to their thermodynamic constraints imposed by the switched cation and anion positions in reference to the original structure. However, a stable antistructure formed with mixed bonding characters of constituent elements in unusual valence states can provide unexpected material properties. Here, a heavy-fermion behavior of ferromagnetic gadolinium lattice in Gd3 SnC antiperovskite is reported, contradicting the common belief that ferromagnetic gadolinium cannot be a heavy-fermion system due to the deep energy level of localized 4f-electrons. The specific heat shows an unusually large Sommerfeld coefficient of ≈1114 mJ mol-1 K-2 with a logarithmic behavior of non-Fermi-liquid state. It is demonstrated that the heavy-fermion behavior in the non-Fermi-liquid state appears to arise from the hybridized electronic states of gadolinium 5d-electrons participating in metallic GdGd and covalent GdC bonds. These results accentuate the unusual chemical bonds in CGd6 octahedra with the dual characters of gadolinium 5d-electrons for the emergence of heavy fermions.

18.
Heliyon ; 7(9): e07896, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34504976

RESUMEN

Novel therapeutics for the treatment of leishmaniasis are of interest as the disease not only is becoming more prevalent, but drug resistance is increasing in certain regions of the world. Reported here is the use of Bi3+-doped strontium aluminum oxyfluoride phosphors and protease inhibitors to test in vitro inhibitory activity against cultured promastigote Leishmania tarentolae and effects on L. tarentolae secreted acid phosphatase (SAP) activity. Cell viability did not significantly decrease in the presence of 50 µM anti-perovskite compounds, implying limited cytotoxicity. Yet SAP activity did increase in the cell free preparations with time in the presence of strontium compounds. Of interest was the observation that cell free SAP activity did not increase in the presence of protease inhibitors with or without added strontium compounds. Since secreted proteases may play a role in the maturation of Leishmania SAP and thus be involved with parasite-host infection establishment, this is in further need of evaluation. Nitric oxide production on day 4 post-addition of the strontium compounds was evaluated and showed an approximately 50% decrease in NO production in the presence of two test compounds relative to DMSO control cells. This is the first report of anti-perovskite compound inhibition of NO production by Leishmania.

19.
Adv Mater ; 32(7): e1905007, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31814165

RESUMEN

ABX3 perovskites, as the largest family of crystalline materials, have attracted tremendous research interest worldwide due to their versatile multifunctionalities and the intriguing scientific principles underlying them. Their counterparts, antiperovskites (X3 BA), are actually electronically inverted perovskite derivatives, but they are not an ignorable family of functional materials. In fact, inheriting the flexible structural features of perovskites while being rich in cations at X sites, antiperovskites exhibit a diverse array of unconventional physical and chemical properties. However, rather less attention has been paid to these "inverse" analogs, and therefore, a comprehensive review is urgently needed to arouse general concern. Recent advances in novel antiperovskite materials and their exceptional functionalities are summarized, including superionic conductivity, superconductivity, giant magnetoresistance, negative thermal expansion, luminescence, and electrochemical energy conversion. In particular, considering the feasibility of the perovskite structure, a universal strategy for enhancing the performance of or generating new phenomena in antiperovskites is discussed from the perspective of solid-state chemistry. With more research enthusiasm, antiperovskites are highly anticipated to become a rising star family of functional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA