RESUMEN
BACKGROUND: The R2R3-MYB transcription factors in plants participate in various physiological and biochemical processes and responds to various external stimuli. Prunus sibirica (known as Siberian apricot) is a drupe tree species that produces extremely high nutritional value kernels. However, it is susceptiblility to frost damage during the flowering period, results in a marked reduction in kernel yield. RESULTS: In this study, the MYB gene family of P. sibirica (PsMYB) was systematically analyzed, and 116 R2R3-MYB genes that were distributed unevenly over eight chromosomes were ultimately screened. Phylogenetic analysis divided these 116 genes into 30 subgroups. We discovered that 37 PsMYBs had cold stress-responsive promoters, and six PsMYBs were annotated to be associated with cold response. Intraspecific homology analysis identified segmental duplication as the primary gene amplification mechanism, and homology analysis of the PsMYB genes with those of five other species revealed phylogenetic relationships with Rosaceae species. Protein interaction studies revealed collaborative regulation of the PsMYB proteins with Arabidopsis protein, and transcriptome analysis identified PsMYB genes that were highly expressed at low temperatures. Additionally, the expression levels of 22 PsMYBs in different tissue parts of P. sibirica and under different low-temperature stress conditions were evaluated using quantitative real-time PCR, with the results verifying that PsMYBs are specifically expressed in different plant parts and may be involved in the growth and development of P. sibirica species. Genes upregulated after exposure to low-temperature stress and likely involved in cold response were identified. CONCLUSION: This study lays a foundation for understanding the molecular biology of PsMYBs in P. sibirica and provides a theoretical basis for the future study of transgenic lines with cold resistance during the flowering period of this tree.
Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Prunus , Factores de Transcripción , Prunus/genética , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas , Genoma de Planta , FríoRESUMEN
Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.
Asunto(s)
Genoma Viral , Enfermedades de las Plantas , Fagos Pseudomonas , Pseudomonas syringae , Pseudomonas syringae/virología , Pseudomonas syringae/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Fagos Pseudomonas/genética , Filogenia , Variación GenéticaRESUMEN
Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.
Asunto(s)
Arabidopsis , Prunus armeniaca , Prunus , Temperatura , Frutas , Altitud , Prunus/genética , Prunus/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genéticaRESUMEN
Chiral phenyl aromatic compounds (CPACs) are widely used in drug development, food/cosmetic production, and other organic synthesis processes, and their different enantiomers have distinct physiological activities and application differences. A double-layer metal-organic framework composite (MOF-on-MOF) was obtained by in situ synthesis of chiral metal-organic framework (CMOM-3S) on the surface of an iron-based metal-organic framework (NH2-MIL-101(Fe)). According to our investigation, MOF-on-MOF composite was for the first time applied to the stationary phase of capillary electrochromatography (CEC), and enantioseparations of eight CPACs were accomplished. Compared with single CMOM-3S, the enantioseparation performance of the coated capillary columns based on NH2-MIL-101(Fe)@CMOM-3S was improved by 34.07 ~ 720.0%. The R-/S-mandelic acid in actual sample (apricot leaves) was detected by the newly CEC system to be 0.0118 mg mL-1 and 0.0523 mg mL-1, respectively. The spike recoveries were 96.60 ~ 104.7%, indicating its good stability and accuracy. In addition, the selective adsorption capacity of MOF-on-MOF composites was verified by adsorption experiments.
RESUMEN
The main objective of this study was to monitor apricot development and ripening through gene expression analysis of key candidate genes using the RT-qPCR technique. Eight apricot cultivars were selected to analyze phenological and genetic patterns from pre-ripening stages through to postharvest. In addition, 19 selected genes were analyzed in the contrasting cultivars 'Cebas Red' and 'Rojo Pasión' in different stages (two preharvest stages S1 and S2, one harvest stage S3, and two postharvest stages S4 and S5). This pool of genes included genes related to fruit growth and ripening, genes associated with fruit color, and genes linked to the fruit's nutraceutical aspects. Among the studied genes, Polygalacturonase (PG), Pectin methylesterase (PME), Aminocyclopropane-1-carboxylate synthase (ACS), and Myo-inositol-1-phosphate synthase (INO1) were directly related to fruit maturation and quality. Significant differential expression was observed between the cultivars, which correlated with variations in firmness, shelf life, and sensory characteristics of the apricots. 'Rojo Pasión' displayed high levels of PG, associated with rapid maturation and shorter postharvest shelf life, whereas 'Cebas Red' exhibited lower levels of this gene, resulting in greater firmness and extended shelf life. Genes CCD4, CRTZ, and ZDS, related to carotenoids, showed varied expression patterns during growth and postharvest stages, with higher levels in 'Rojo Pasión'. On the other hand, Sucrose synthase (SUSY) and Lipoxygenase (LOX2) were prominent during the postharvest and growth stages, respectively. Additionally, GDP-L-galactose phosphorylase (VTC2_5) was linked to better postharvest performance. This research provides valuable insights for future breeding initiatives aimed at enhancing the quality and sustainability of apricot cultivation.
Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Prunus armeniaca , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Perfilación de la Expresión Génica/métodos , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismoRESUMEN
Research background: The addition of sweet apricot kernel powder, a by-product of apricot processing, to yoghurt appears to be particularly interesting option for the innovation of new food products. This study focuses on the formulation of a novel yoghurt enriched with sweet apricot kernel powder, sugar and milk powder. Experimental approach: Different yoghurts were prepared by mixing sweet apricot kernel powder, sugar and milk powder as ingredients based on the simplex-centroid mixture design. The optimisation process took into account the physicochemical, antioxidant and sensory properties of the yoghurt. Results and conclusions: The results showed that the optimum values of sugar, milk powder and apricot kernel powder were 3.07, 2.16 and 2.77 %, respectively. The physicochemical assays showed that the addition of apricot kernel powder led to a significant increase in total phenolic content, antioxidant activity, syneresis, viscosity and acidity. The addition of sugar and milk powder also had a significant effect on the taste, texture and consistency of the yoghurt. Moreover, the enrichment of the product with apricot kernel powder significantly influenced the colour, odour, taste, texture and consistency. In conclusion, the optimised yoghurt enriched with apricot kernel had an interesting phenolic content and antioxidant properties with sensory acceptability, while reducing the amount of sugar and milk powder. This confirms the potential of using sweet apricot kernels as an ingredient in yoghurt production. Novelty and scientific contribution: The use of a simplex-centroid mixture design to optimise a new yoghurt formulation enriched with sweet apricot kernels shows significant improvements in total phenolic content, antioxidant activity and sensory acceptability. In addition, less sugar and milk powder is needed. The addition of sweet apricot kernels to yoghurt is therefore a new approach to improving its nutritional value and sensory appeal.
RESUMEN
BACKGROUND: This study used four different apricot (Prunus armeniaca) kernels cultivated in Malatya during two consecutive years. The varieties were Hacihaliloglu, Hasanbey, Kabaasi, and Zerdali. The physicochemical properties of the kernels were determined, and the bioactive content of the kernels was evaluated using kernel hydrolysates prepared using trypsin. RESULTS: With regard to the physicochemical properties of the kernels, the dry matter ratio and protein content were the highest in the Hacihaliloglu variety; the ash ratio was the highest in the Kabaasi variety, and the free oil ratio was the highest in the Hasanbey variety. The bioactive compound content changed according to kernel variety. Angiotensin-converting enzyme inhibitors activity was found to be the highest in the Hacihaliloglu and Hasanbey varieties, which had the lowest amygdalin content, and Zerdali had the highest amygdalin content. The antioxidant and antimicrobial effects of the kernels varied, with Hasanbey and Kabaasi generally having the highest content in both analyses. Moreover, a concentration of 20 mg mL-1 of the hydrolysate was determined to have a destructive effect for the microorganisms used in this study. The storage protein of the kernels, except Hacihaliloglu, was found to be Prunin 1, with the longest matching protein chain in the kernels being R.QQQGGQLMANGLEETFCSLRLK.E. CONCLUSION: The results suggest that the peptide sequences identified in the kernels could have antihypertensive, antioxidative, and Dipeptidyl peptidase IV (DPP-IV) inhibitory effects. Consequently, apricot kernels show potential for use in the production of functional food products. Of the kernels evaluated in this study, Hacihaliloglu and Hasanbey were deemed the most suitable varieties due to their higher bioactive content and lower amygdalin content. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Antioxidantes , Prunus armeniaca , Semillas , Antioxidantes/química , Antioxidantes/farmacología , Prunus armeniaca/química , Semillas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Péptidos/química , Péptidos/farmacología , Proteínas de Plantas/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Secuencia de AminoácidosRESUMEN
Japanese apricot (Prunus mume) is an attractive fruit tree originating from China, and its cultivation history dates back 7000 years. In this study, we investigated the genetic diversity, population structure, and genetic relationship of Japanese apricots in different regions of China and Japan. The analyses of the genetic variation between wild and cultivated populations improved our understanding of the general mechanisms of domestication and improvement. A total of 146 accessions of Japanese apricot from different geographic locations were sequenced. The genetic diversity of wild and domesticated accessions (3.60 × 10-3 and 3.51 × 10-3 , respectively) from China was high, and the effect of artificial selection pressure on domesticated accessions was small; however, the genetic diversity of artificially bred accessions decreased significantly (2.68 × 10-3 ) compared to domesticated accessions, which had an obvious improvement bottleneck effect. The chloroplast genome results showed that 41 haplotypes were detected, and Japanese apricots from the Yunnan region had the most haplotypes and the highest genetic diversity. The results revealed the dissemination route of Japanese apricot, not only along the Yangtze River basin system (from southwest China to Hunan, Jiangxi, and Anhui, and finally to the Jiangsu, Zhejiang, and Shanghai areas). Additionally, we discovered a second route for Japanese apricot dispersion, which was mostly in the Pearl River basin system, from southwest China to Libo of Guizhou and then to the Guangdong, Fujian, and Taiwan areas. This also showed that Japanese-bred accessions originated from Zhejiang, China. In addition, selective sweep analysis showed that most of the high-impact single nucleotide polymorphisms were identified in genes related to glucose metabolism, aromatic compound metabolism, flowering time, dormancy, and resistance to abiotic stress during the domestication and improvement of Japanese apricot.
Asunto(s)
Prunus armeniaca , Prunus , China , Frutas/química , Genómica , Fitomejoramiento , Prunus/genética , Prunus armeniaca/genéticaRESUMEN
Quality of apricot fruit is affected by different biotic stresses during growth, harvesting and storage. Due to fungal attack, huge losses of its quality and quantity are observed. The present research was designed for the diagnoses and management of postharvest rot disease of apricot. Infected apricot fruit were collected, and the causative agent was identified as A. tubingensis. To control this disease, both bacterial-mediated nanoparticles (b-ZnO NPs) and mycosynthesized nanoparticles (f-ZnO NPs) were used. Herein, biomass filtrates of one selected fungus (Trichoderma harzianum) and one bacterium (Bacillus safensis) were used to reduce zinc acetate into ZnO NPs. The physiochemical and morphological characters of both types of NPs were determined. UV-vis spectroscopy displayed absorption peaks of f-ZnO NPs and b-ZnO NPs at 310-380 nm, respectively, indicating successful reduction of Zinc acetate by the metabolites of both fungus and bacteria. Fourier transform infrared (FTIR) determined the presence of organic compounds like amines, aromatics, alkenes and alkyl halides, on both types of NPs, while X-ray diffraction (XRD) confirmed nano-size of f-ZnO NPs (30 nm) and b-ZnO NPs (35 nm). Scanning electron microscopy showed flower-crystalline shape for b-ZnO NPs and spherical-crystalline shape for f-ZnO NPs. Both NPs showed variable antifungal activities at four different concentrations (0.25, 0.50, 0.75 and 1.00 mg/ml). Diseases control and postharvest changes in apricot fruit were analyzed for 15 days. Among all treatments, 0.50 mg/ml concentration of f-ZnO NPs and 0.75 mg/ml concentration of b-ZnO NPs exhibited the strongest antifungal activity. Comparatively, f-ZnO NPs performed slightly better than b-ZnO NPs. Application of both NPs reduced fruit decay and weight, maintained higher ascorbic acid contents, sustained titratable acidity, and preserved firmness of diseased fruit. Our results suggest that microbial synthesized ZnO NPs can efficiently control fruit rot, extend shelf life, and preserve the quality of apricot.
Asunto(s)
Nanopartículas del Metal , Prunus armeniaca , Óxido de Zinc , Antifúngicos/farmacología , Óxido de Zinc/química , Prunus armeniaca/metabolismo , Ácido Ascórbico/farmacología , Acetato de Zinc , Pruebas de Sensibilidad Microbiana , Bacterias/metabolismo , Extractos Vegetales/química , Antibacterianos/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos XRESUMEN
Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional woody flower and fruit tree restrictedly cultivated in northern area due to its inability to survive harsh winters and early springs. In the current study, RNA-seq and physiological assay were used to study the cold response of P. mume 'Xuemei'. A total of 4705 genes were identified as differentially expressed genes (DEGs) in the 21 pairwise comparisons among seven time points under 0 °C cold treatment, and 3678 of them showed differential levels compared with control at normal temperature. The gene expression profiles indicated that the number of upregulated genes increased with prolongation of treatment time throughout the whole 48 h. Hierarchical clustering suggested three obvious phases of the gene expression profiles. Gene ontology (GO) analysis of the 4705 DEGs resulted in 102 significantly enriched GO items in which the transcription activity was dominant. 225 DEGs were predicted to encode transcription factor (TF) genes. Some important TFs (ERF, CBF, WRKY, NAC, MYB, bHLH) were strongly induced during the whole cold treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that plant signal transduction pathways such as plant hormone and calcium (Ca2+) were notable. Metabolic pathways such as sugar metabolism, especially RFOs (raffinose family oligosaccharides) were activated, which was accompanied by the accumulation of soluble sugars. SOD and POD enzyme activities coupled with reactive oxygen species (ROS)-related gene expression profile implied a gradually induced ROS scavenging system under cold treatment. These results might shed light on the sensitivity to cold stress in Japanese apricot and provide new insights into hardiness studies in P. mume and its related species. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01376-2.
RESUMEN
BACKGROUND: Apricot fruit has great economic value. In the process of apricot breeding using traditional breeding methods, we obtained a larger seedling (named Us) from the original variety (named U). And Us fruit is larger than U, taste better. Therefore, revealing its mechanism is very important for Apricot breeding. METHODS: In this study, de novo assembly and transcriptome sequencing (RNA-Seq) was used to screen the differently expressed genes (DEGs) between U and Us at three development stages, including young fruits stage, mid-ripening stage and mature fruit stage. RESULTS: The results showed that there were 6,753 DEGs at different sampling time. "Cellulose synthase (UDP-forming) activity" and "cellulose synthase activity" were the key GO terms enriched in GO, of which CESA and CSL family played a key role. "Photosynthesis-antenna proteins" and "Plant hormone signal transduction" were the candidate pathways and lhca, lhcb, Aux/IAA and SAUR were the main regulators. CONCLUSION: The auxin signaling pathway was active in Us, of which Aux/IAAs and SAUR were the key fruit size regulators. The low level of lhca and lhcb in Us could reveal the low demand for exogenous carbon, but they increased at mature stage, which might be due to the role of aux, who was keeping the fruit growing. Aux and photosynthesis maight be the main causes of appearance formation of Us fruits. Interestingly, the higher expression of CESA and CSL proved that Us entered the hardening process earlier than U. The advanced developmental progress might also be due to the role of Aux.
Asunto(s)
Frutas , Prunus armeniaca , Frutas/metabolismo , Prunus armeniaca/genética , Plantones/genética , Plantones/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma/genética , Ácidos Indolacéticos/metabolismoRESUMEN
Irrigation with desalinated seawater (DSW) is a potential solution for addressing water scarcity in semiarid regions across the globe. However, this strategy may compromise the health of agricultural ecosystems due to the high content of phytotoxic elements (mainly boron, B) in this water. Here, a three-year experiment was carried to evaluate the response of the soil's physicochemical and microbiological properties, and plant physiology, to three irrigation water treatments (DSW; fresh water, FW; and their blend (1:1), BW) in the presence or not of organic amendments. Lemon trees (Citrus limon (L.) Burm. fil. cv. Eureka), with a higher sensitivity to B toxicity, and apricot trees (Prunus armeniaca L. cv. 'Búlida'), with a lower one, were used as model plants. Lemon trees irrigated with BW and DSW showed a decline in net photosynthesis and stomatal conductance, and an accumulation of B in leaves that exceeded the toxicity threshold. These effects were stronger in amended soils. In soils cultivated with lemon trees, DSW irrigation increased the water-soluble nitrogen content, the urease activity, and the activity and biomass of the microbial community, and shifted the microbial community structure as compared with the other water treatments. The soil microbial community responses were controlled by the addition of organic amendments. The irrigation of apricots with DSW did not negatively impact plant physiological parameters but increased the soil microbial biomass, as in the case of the lemon tree-soil system. These results suggest that DSW irrigation increases soil microbial biomass in both crop-soil systems but harms the physiological status of the most sensitive crop. Our findings provide an initial approach to evaluate the response of the plant-soil system to DSW.
Asunto(s)
Citrus , Suelo , Suelo/química , Ecosistema , Microbiología del Suelo , Agricultura , Agua de Mar , Riego Agrícola/métodosRESUMEN
Frost stress is a major environmental factor that limits apricot growth in the warm temperate zone (WTZ) of China, and is always triggered by extreme low temperature weather processes. In this study, the characteristics of the apricot frost processes f(D, Tcum), which were identified from historical disaster representation, were analyzed and apricot frost evaluation indicators were developed, thus facilitating the process-based assessment and spatiotemporal analysis of apricot frost processes. Periods of low temperature that persist for 1~2, 3, and ≥4 days (i.e., duration days, D) provide the initial identification indicator for light, moderate, and severe apricot frost. The threshold ranges for Tcum are 0~3.9, 9.2~12.0, and >16.2 for D values of 1~2, 3, and ≥4, respectively. The northwest of the WTZ is dominated by apricot frost, with approximately 80% of apricot frost being light, followed by moderate and severe. Regional apricot frost exhibited a significant decreasing trend over the last four decades. A total of 29.65% of stations, which were mainly located in the northwest and middle parts of the study region, detected an increasing trend in apricot frost. The results provide technical support for targeted apricot frost level detection, and the process-based spatiotemporal characteristics of apricot frost can provide basic information for the prevention and mitigation of apricot frost.
RESUMEN
Fungal trunk diseases (FTDs) have been a significant threat to the global stone fruit industry. FTDs are caused by a consortium of wood-decaying fungi. These fungi colonize woody tissues, causing cankers, dieback, and other decline-related symptoms in host plants. In this study, a detailed screening of the fungal microbiota associated with the decline of stone fruit trees in the Czech Republic was performed. The wood fragments of plum and apricot trees showing symptoms of FTDs were subjected to fungal isolation. The partial internal transcribed spacer (ITS) region, partial beta-tubulin (tub2) and translation elongation factor 1-α (tef) genes were amplified from genomic DNA extracted from fungal cultures. All isolates were classified, and the taxonomic placement of pathogenic strains was illustrated in phylogenetic trees. The most abundant pathogenic genus was Dactylonectria (31 %), followed by Biscogniauxia (13 %), Thelonectria (10 %), Eutypa (9 %), Dothiorella (7 %), Diplodia (6 %), and Diaporthe (6 %). The most frequent endophytic genus was Aposphaeria (17 %). The pathogenicity of six fungal spp. (Cadophora daguensis, Collophorina africana, Cytospora sorbicola, Dothiorella sarmentorum, Eutypa lata, and Eutypa petrakii var. petrakii to four Prunus spp. was evaluated and the Koch's postulates were fulfilled. All tested isolates caused lesions on at least one Prunus sp. The most aggressive species was E. lata, which caused the largest lesions on all four tested Prunus spp., followed by E. petrakii var. petrakii, and D. sarmentorum. Japanese plum (Prunus salicina) and almond (P. amygdalus) were the most susceptible hosts while apricot (P. armeniaca) was the least susceptible host in the pathogenicity trial.
RESUMEN
Japanese apricot is an imperative stone fruit plant with numerous processing importance. The failure of reproductive system is the most common cause of fruit loss, through which pistil abortion is the fundamental one. To understand this mechanism, we used a combination of transcriptomic and metabolomic approaches to investigate the biochemical and molecular basis of flavonoid biosynthesis. Due to the regulated expression of flavonoid pathway-related genes in plants, flavonoid biosynthesis is largely regulated at the transcriptional level. A total of 2272 differently expressed genes and 215 differential metabolites were found. The expression of the genes and metabolites encoding flavonoid biosynthesis was lower in abnormal pistils that are in line with the flavonoid quantification from abnormal pistils. Besides, a couple of genes were also detected related to MYB, MADS, NAC and bHLH transcription factors. Remarkably, we found 'hydroxycinnamoyl transferase (LOC103323133)' and flavonoid related metabolite '2-hydroxycinnamic acid' was lower expressed in abnormal pistil, proposing the cause of pistil abortion. Collectively, the present study delivers inclusive transcriptional and metabolic datasets that proposed valuable prospects to unravel the genetic mechanism underlying pistil abortion.
Asunto(s)
Prunus armeniaca , Transcriptoma , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ácidos Cumáricos/metabolismo , Flavonoides , Flores/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Transferasas/genética , Transferasas/metabolismoRESUMEN
The apricot (Prunus armeniaca L.) is a fruit that belongs to the Rosaceae family; it has a unique flavor and is of important economic and nutritional value. The composition and content of soluble sugars and organic acids in fruit are key factors in determining the flavor quality. However, the molecular mechanism of sugar and acid accumulation in apricots remains unclear. We measured sucrose, fructose, glucose, sorbitol, starch, malate, citric acid, titratable acid, and pH, and investigated the transcriptome profiles of three apricots (the high-sugar cultivar 'Shushanggan', common-sugar cultivar 'Sungold', and low-sugar cultivar 'F43') at three distinct developmental phases. The findings indicated that 'Shushanggan' accumulates a greater amount of sucrose, glucose, fructose, and sorbitol, and less citric acid and titratable acid, resulting in a better flavor; 'Sungold' mainly accumulates more sucrose and less citric acid and starch for the second flavor; and 'F43' mainly accumulates more titratable acid, citric acid, and starch for a lesser degree of sweetness. We investigated the DEGs associated with the starch and sucrose metabolism pathways, citrate cycle pathway, glycolysis pathway, and a handful of sugar transporter proteins, which were considered to be important regulators of sugar and acid accumulation. Additionally, an analysis of the co-expression network of weighted genes unveiled a robust correlation between the brown module and sucrose, glucose, and fructose, with VIP being identified as a hub gene that interacted with four sugar transporter proteins (SLC35B3, SLC32A, SLC2A8, and SLC2A13), as well as three structural genes for sugar and acid metabolism (MUR3, E3.2.1.67, and CSLD). Furthermore, we found some lncRNAs and miRNAs that regulate these genes. Our findings provide clues to the functional genes related to sugar metabolism, and lay the foundation for the selection and cultivation of high-sugar apricots in the future.
Asunto(s)
Prunus armeniaca , Transcriptoma , Azúcares/metabolismo , Prunus armeniaca/genética , Frutas/metabolismo , Carbohidratos/análisis , Glucosa/metabolismo , Ácidos/metabolismo , Sacarosa/metabolismo , Ácido Cítrico/metabolismo , Almidón/metabolismo , Fructosa/metabolismo , Metaboloma , Sorbitol/análisisRESUMEN
Fruit size is one of the essential quality traits and influences the economic value of apricots. To explore the underlying mechanisms of the formation of differences in fruit size in apricots, we performed a comparative analysis of anatomical and transcriptomics dynamics during fruit growth and development in two apricot cultivars with contrasting fruit sizes (large-fruit Prunus armeniaca 'Sungold' and small-fruit P. sibirica 'F43'). Our analysis identified that the difference in fruit size was mainly caused by the difference in cell size between the two apricot cultivars. Compared with 'F43', the transcriptional programs exhibited significant differences in 'Sungold', mainly in the cell expansion period. After analysis, key differentially expressed genes (DEGs) most likely to influence cell size were screened out, including genes involved in auxin signal transduction and cell wall loosening mechanisms. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that PRE6/bHLH was identified as a hub gene, which interacted with 1 TIR1, 3 AUX/IAAs, 4 SAURs, 3 EXPs, and 1 CEL. Hence, a total of 13 key candidate genes were identified as positive regulators of fruit size in apricots. The results provide new insights into the molecular basis of fruit size control and lay a foundation for future breeding and cultivation of larger fruits in apricot.
Asunto(s)
Prunus armeniaca , Prunus armeniaca/genética , Frutas , Transcriptoma , Fitomejoramiento , Perfilación de la Expresión GénicaRESUMEN
Prunus fruit seeds are one of the main types of agri-food waste generated worldwide during the processing of fruits to produce jams, juices and preserves. To valorize this by-product, the aim of this work was the nutritional analysis of peach, apricot, plum and cherry seeds using the official AOAC methods, together with the extraction and characterization of the lipid profile of seed oils using GC-FID, as well as the measurement of the antioxidant activity and oxidative stability using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. Chemometric tools were required for data evaluation and the obtained results indicated that the main component of seeds were oils (30-38%, w). All seed oils were rich in oleic (C18:1n9c) and linoleic (C18:2n6c) acids and presented heart-healthy lipid indexes. Oil antioxidant activity was estimated in the range IC50 = 20-35 mg·mL-1, and high oxidative stability was observed for all evaluated oils during 1-22 storage days, with the plum seed oil being the most antioxidant and stable over time. Oxidative stability was also positively correlated with oleic acid content and negatively correlated with linoleic acid content. Therefore, this research showed that the four Prunus seed oils present interesting healthy characteristics for their use and potential application in the cosmetic and nutraceutical industries.
Asunto(s)
Ácidos Grasos , Eliminación de Residuos , Ácidos Grasos/química , Antioxidantes/análisis , Aceites de Plantas/química , Semillas/química , Estrés OxidativoRESUMEN
BACKGROUND: Single primer enrichment technology (SPET) is an emerging and increasingly popular solution for high-throughput targeted genotyping in plants. Although SPET requires a priori identification of polymorphisms for probe design, this technology has potentially higher reproducibility and transferability compared to other reduced representation sequencing (RRS) approaches, also enabling the discovery of closely linked polymorphisms surrounding the target one. RESULTS: The potential for SPET application in fruit trees was evaluated by developing a 25K target SNPs assay to genotype a panel of apricot accessions and progenies. A total of 32,492 polymorphic sites were genotyped in 128 accessions (including 8,188 accessory non-target SNPs) with extremely low levels of missing data and a significant correlation of allelic frequencies compared to whole-genome sequencing data used for array design. Assay performance was further validated by estimating genotyping errors in two biparental progenies, resulting in an overall 1.8% rate. SPET genotyping data were used to infer population structure and to dissect the architecture of fruit maturity date (MD), a quantitative reproductive phenological trait of great agronomical interest in apricot species. Depending on the year, GWAS revealed loci associated to MD on several chromosomes. The QTLs on chromosomes 1 and 4 (the latter explaining most of the phenotypic variability in the panel) were the most consistent over years and were further confirmed by linkage mapping in two segregating progenies. CONCLUSIONS: Besides the utility for marker assisted selection and for paving the way to in-depth studies to clarify the molecular bases of MD trait variation in apricot, the results provide an overview of the performance and reliability of SPET for fruit tree genetics.
Asunto(s)
Prunus armeniaca , Prunus armeniaca/genética , Reproducibilidad de los Resultados , Frutas/genética , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple , TecnologíaRESUMEN
BACKGROUND: Apricot kernel, a woody oil tree species, is known for the high oil content of its almond that can be used as an ideal feedstock for biodiesel production. However, apricot kernel is vulnerable to spring frost, resulting in reduced or even no yield. There are no effective countermeasures in production, and the molecular mechanisms underlying freezing resistance are not well understood. RESULTS: We used transcriptome and hormone profiles to investigate differentially responsive hormones and their associated co-expression patterns of gene networks in the pistils of two apricot kernel cultivars with different cold resistances under freezing stress. The levels of auxin (IAA and ICA), cytokinin (IP and tZ), salicylic acid (SA) and jasmonic acid (JA and ILE-JA) were regulated differently, especially IAA between two cultivars, and external application of an IAA inhibitor and SA increased the spring frost resistance of the pistils of apricot kernels. We identified one gene network containing 65 hub genes highly correlated with IAA. Among these genes, three genes in auxin signaling pathway and three genes in brassinosteroid biosynthesis were identified. Moreover, some hub genes in this network showed a strong correlation such as protein kinases (PKs)-hormone related genes (HRGs), HRGs-HRGs and PKs-Ca2+ related genes. CONCLUSIONS: Ca2+, brassinosteroid and some regulators (such as PKs) may be involved in an auxin-mediated freezing response of apricot kernels. These findings add to our knowledge of the freezing response of apricot kernels and may provide new ideas for frost prevention measures and high cold-resistant apricot breeding.