Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072959

RESUMEN

Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated ß-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed ß-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.

2.
Phytomedicine ; 123: 155223, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134862

RESUMEN

BACKGROUND AND AIMS: Crohn's disease (CD) is characterized by an overabundance of epithelial cell death and an imbalance in microflora, both of which contribute to the dysfunction of the intestinal barrier. Arjunolic acid (AA) has anti-apoptotic effects and regulates microbiota efficacy. The objective of this study was to assess the impact of the treatment on colitis resembling Crohn's disease, along with exploring the potential underlying mechanism. METHODS: CD animal models were created using Il-10-/- mice, and the impact of AA on colitis in mice was evaluated through disease activity index, weight fluctuations, pathological examination, and assessment of intestinal barrier function. To clarify the direct role of AA on intestinal epithelial cell apoptosis, organoids were induced by LPS, and TUNEL staining was performed. To investigate the potential mechanisms of AA in protecting the intestinal barrier, various methods including bioinformatics analysis and FMT experiments were employed. RESULTS: The treatment for AA enhanced the condition of colitis and the function of the intestinal barrier in Il-10-/- mice. This was demonstrated by the amelioration of weight loss, reduction in tissue inflammation score, and improvement in intestinal permeability. Moreover, AA suppressed the apoptosis of intestinal epithelial cells in Il-10-/- mice and LPS-induced colon organoids, while also reducing the levels of Bax and C-caspase-3. In terms of mechanism, AA suppressed the activation of TLR4 signaling in Il-10-/- mice and colon organoids induced by LPS. In addition, AA increased the abundance of short-chain fatty acid-producing bacteria in the stool of Il-10-/- mice, and transplantation of feces from AA-treated mice improved CD-like colitis. CONCLUSIONS: The results of our study demonstrate that AA has a protective effect on the intestinal barrier in Crohn's disease-like colitis by preventing apoptosis. Additionally, this groundbreaking study reveals the capacity of AA to hinder TLR4 signaling and alter the makeup of the intestinal microbiome. The findings present fresh possibilities for treating individuals diagnosed with Crohn's disease. AA offers a hopeful novel strategy for managing Crohn's disease by obstructing crucial pathways implicated in intestinal inflammation and enhancing the gut microbiota.


Asunto(s)
Colitis , Enfermedad de Crohn , Microbioma Gastrointestinal , Triterpenos , Ratones , Animales , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Interleucina-10/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Sulfato de Dextran/efectos adversos , Colon/patología
3.
J Ethnopharmacol ; 330: 118225, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670408

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Neuroinflammation is involved in the pathogenesis of depression disorder by activating microglia cells, increasing proinflammatory cytokines, effecting serotonin synthesis and metabolism, and neuronal apoptosis and neurogenesis. Arjunolic acid (ARG) is a triterpenoid derived from the fruits of Akebia trifoliata for treating psychiatric disorders in TCM clinic, which exhibits anti-inflammatory and neuroprotective effects. However, its anti-depressive effect and underlying mechanism are unknown. AIM OF THE STUDY: The aim of this study is to explore the effect of arjunolic acid on depression and its possible mechanisms. METHODS: Intraperitoneal injection of LPS in mice and LPS stimulated-BV2 microglia were utilized to set up in vivo and in vitro models. Behavioral tests, H&E staining and ELISA were employed to evaluate the effect of arjunolic acid on depression. RT-qPCR, immunofluorescence, molecular docking and Western blot were performed to elucidate the molecular mechanisms. RESULTS: Arjunolic acid dramatically ameliorated depressive behavior in LPS-induced mice. The levels of BDNF and 5-HT in the hippocampus of the mice were increased, while the number of iNOS + IBA1+ cells in the brain were decreased and Arg1+IBA1+ positive cells were increased after arjunolic acid treatment. In addition, arjunolic acid promoted the polarization of BV2 microglia from M1 to M2 type. Notably, drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and molecular docking technologies identified SIRT1 as the target of arjunolic acid. Moreover, after SIRT1 inhibition by using EX-527, the effects of arjunolic acid on ameliorating LPS-induced depressive behavior in mice and promoting M2 Microglia polarization were blocked. In addition, arjunolic acid activated AMPK and decreased Notch1 expression, however, inhibition of AMPK, the effect of arjunolic acid on the downregulation of Notch1 expression were weaken. CONCLUSIONS: This study elucidates that arjunolic acid suppressed neuroinflammation through modulating the SIRT1/AMPK/Notch1 signaling pathway. Our study demonstrates that arjunolic acid might serve as a potiential anti-depressant.


Asunto(s)
Depresión , Lipopolisacáridos , Microglía , Transducción de Señal , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Línea Celular , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Depresión/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Simulación del Acoplamiento Molecular , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico
4.
Cell Biochem Biophys ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042185

RESUMEN

Chronic hepatitis caused by the hepatitis C virus (HCV) is closely linked with the advancement of liver disease. The research hypothesis suggests that the NS5B enzyme (non-structural 5B protein) of HCV plays a pivotal role in facilitating viral replication within host cells. Hence, the objective of the present investigation is to identify the binding interactions between the structurally diverse phytotherapeutics and those of the catalytic residue of the target NS5B polymerase protein. Results of our docking simulations reveal that compounds such as arjunolic acid, sesamin, arjungenin, astragalin, piperic acid, piperidine, piperine, acalyphin, adhatodine, amyrin, anisotine, apigenin, cuminaldehyde, and curcumin exhibit a maximum of three interactions with the catalytic residues (Asp 220, Asp 318, and Asp 319) present on the Hepatitis C virus NS5B polymerase of HCV. Molecular dynamic simulation, particularly focusing on the best binding lead compound, arjunolic acid (-8.78 kcal/mol), was further extensively analyzed using RMSD, RMSF, Rg, and SASA techniques. The results of the MD simulation confirm that the NS5B-arjunolic acid complex becomes increasingly stable from 20 to 100 ns. The orientation of both arjunolic acid and sofosbuvir triphosphate (standard) within the active site was investigated through DCCM, PCA, and FEL analysis, indicating highly stable interactions of the lead arjunolic acid with the catalytic region of the NS5B enzyme. The findings of our current investigation suggest that bioactive therapeutics like arjunolic acid could serve as promising candidates for limiting the NS5B polymerase activity of the hepatitis C virus, offering hope for the future of HCV treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA