Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474453

RESUMEN

Atractylenolide II (AT-II), the major bioactive compound of Atractylodes macrocephala, exhibits anti-cancer activity against many types of tumors, but the roles and the potential mechanisms in endometrial cancer remain unclear. In the present study, AT-II treatment was found to significantly suppress RL95-2 and AN3CA cell proliferation and glycolysis, and induced their apoptosis by inactivating the ERK signaling pathway, accompanied by the changing expression of the glycolytic key enzymes and apoptotic-related proteins. Peptidyl arginine deiminase 3 (PADI3), as the candidate target gene of AT-II, was highly expressed in the endometrial cancer tissues and associated with a poor prognosis according to bioinformatics analysis. PADI3 knockdown inhibited proliferation and glycolysis in endometrial cancer cells and induced cell apoptosis. Furthermore, AT-II negatively regulated the expression of PADI3, and PADI3 overexpression reversed the effects of AT-II on endometrial cancer cells. Our findings suggested that the anti-cancer function of AT-II is associated with the suppression of glycolysis and induction of apoptosis by blocking the PADI3-ERK signaling pathway. Thus, AT-II represents a novel therapeutic target for endometrial cancer and targeting AT-II may serve as a potential strategy for the clinical therapy of endometrial cancer.


Asunto(s)
Neoplasias Endometriales , Lactonas , Sesquiterpenos , Transducción de Señal , Femenino , Humanos , Neoplasias Endometriales/tratamiento farmacológico , Apoptosis , Proliferación Celular , Proteínas Reguladoras de la Apoptosis/metabolismo , Glucólisis , Línea Celular Tumoral , Arginina Deiminasa Proteína-Tipo 3/metabolismo
2.
Immunopharmacol Immunotoxicol ; 44(2): 227-237, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35166628

RESUMEN

OBJECTIVE: M2-like tumor-associated macrophages (TAMs) play a crucial role in promoting tumor proliferation, angiogenesis, and metastasis. In the current study, we investigated the relationship between macrophage polarization and the antitumor effect of Atractylenolide II (AT-II) in lung cancer cells. MATERIALS AND METHODS: Cell viability, migration, and invasion were determined by MTT assay, wound healing assay, and transwell assay, respectively. Flow cytometry analysis showed the percentage of CD206+ cells. Gene expression was determined by real-time PCR, western blotting, and immunofluorescence staining. Lewis lung carcinoma mouse xenograft and metastasis models were used to examine the effects of AT-II on lung cancer in vivo. RESULTS: AT-II (2.5 and 5 µM) did not cause significant inhibition of A549 cell viability but markedly inhibited IL-4/IL-13-induced M2-like polarization, evidenced by the decreased expression of the M2 surface marker CD206, down-regulation of specific M2-marker genes (Arg-1, IL-10 and TGF-ß) as well as inhibition of M2 macrophages-mediated invasion and migration of A549 cells. In addition, AT-II inhibited IL-4/IL-13-induced activation of the STAT6 signaling pathway that is vital in the M2-like polarization of macrophages. In animal models, administration of AT-II (50 mg kg-1, i.g., QD for 21 days) significantly inhibited tumor growth, reduced pulmonary metastatic nodules, and down-regulated the percentages of M2 macrophages (F4/80+ and CD206+) in total macrophages (F4/80+) in tumor tissues and pulmonary metastatic nodules. CONCLUSIONS: AT-II effectively inhibits M2-like polarization, thereby inhibiting lung cancer cell metastasis both in vivo and in vitro, revealing a novel potential strategy for the antitumor effect of AT-II.


Asunto(s)
Neoplasias Pulmonares , Macrófagos Asociados a Tumores , Células A549 , Animales , Línea Celular Tumoral , Humanos , Lactonas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Ratones , Sesquiterpenos
3.
Cell Biochem Funct ; 35(8): 518-526, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29214656

RESUMEN

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) regulates antioxidant enzymes and phase II detoxifying enzymes, such as NAD(P)H: quinone oxidoreductase 1 (NQO1). Modified Xiaoyao powder (MXP) is most frequently used in the prevention and treatment of breast cancer in China. This study aimed to screen active components of MXP for antioxidant stress and chemoprevention, which depend on NRF2-NQO1 signalling pathway. A total of 25 monomeric compounds contained in MXP were screened using an antioxidant response element-luciferase reporter. The most potent antioxidant response element-luciferase inducers were chosen to further examine their effects on NRF2 and NQO1 in MCF-7 cells. These results were then confirmed by determining the oxidative stress levels and chemopreventive effect on inhibiting carcinogenesis transformation in NRF2 knockdown (NRF2KD ) and NRF2 wild-type MCF-10A cells. We found that quercetin, kaempferol, and atractylenolide II in MXP were potent NRF2 inducers, which could up-regulate the expression of NRF2 and its downstream enzymes NQO1. In addition, these components could decrease reduced oxidative stress and inhibit carcinogenesis transformation, which depended on NRF2-NQO1 pathway. In conclusion, NRF2-NQO1 pathway plays an essential role in mediating the activity of MXP and its active components, at least in part; some beneficial effects of MXP may be applicable to breast cancer chemoprevention. Our study firstly found MXP active components including quercetin, kaempferol, and atractylenolide II. Our results firstly demonstrate that NRF2-NQO1 pathway plays an essential role in mediating the activity of MXP and its active components in breast cancer chemoprevention. Our study firstly found that atractylenolide II is a novel NRF2 inducer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/prevención & control , Medicamentos Herbarios Chinos/química , Factor 2 Relacionado con NF-E2/agonistas , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Células Cultivadas , Quimioprevención , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Quempferoles/química , Quempferoles/aislamiento & purificación , Quempferoles/farmacología , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Relación Estructura-Actividad
4.
Molecules ; 22(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099789

RESUMEN

Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8) assay, morphological changes, flow cytometry, wound healing assay and Western blot analysis were used to investigate the effects of AT-II on cell proliferation, apoptosis and motility of human gastric carcinoma cell lines HGC-27 and AGS. Our results indicated that AT-II could significantly inhibit cell proliferation, motility and induce apoptosis in a dose and time-dependent manner. Western blot analysis showed that the expression level of Bax was upregulated and the expression levels of B-cell lymphoma-2 (Bcl-2), phosphorylated-protein kinase B (p-Akt) and phosphorylated-ERK (p-ERK) were downregulated compared to control group. In conclusion, the findings suggested that AT-II exerted significant anti-tumor effects on gastric carcinoma cells by modulating Akt/ERK signaling pathway, which might shed light on therapy of gastric carcinoma.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lactonas/farmacología , Sesquiterpenos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Gástricas
5.
Exp Dermatol ; 23(11): 855-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25073716

RESUMEN

Our previous studies showed that atractylenolide II (AT-II) has antimelanoma effects in B16 melanoma cells. In this study, we investigated the involvement of STAT3 signalling in the antimelanoma action of AT-II. Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts. In B16 and A375 cells, AT-II (20, 40 µm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II. These data suggest that inhibition of STAT3 signalling contributes to the antimelanoma action of AT-II. Our findings shed new light on the mechanism of action underlying the antimelanoma effects of AT-II and provide further pharmacological basis for developing AT-II as a novel melanoma chemopreventive/chemotherapeutic agent.


Asunto(s)
Lactonas/química , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Factor de Transcripción STAT3/metabolismo , Sesquiterpenos/química , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Animales , Anticarcinógenos/química , Apoptosis , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Technol Health Care ; 32(1): 131-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37483026

RESUMEN

BACKGROUND: Hypertension is a well-recognized risk factor for cardiovascular, which is also a critical factor in causing myocardial fibrosis (MF). OBJECTIVE: The study aimed to explore the effect of Atractylenolide II (ATL-II) on MF and oxidative stress in spontaneous hypertension rats (SHR). METHODS: The body weight of rats after injection of ATL-II was quantitatively analyzed. The left ventricular function of SHR was evaluated by Echocardiographic. HE staining, Masson trichrome staining, left ventricular mass index (LVMI) and immunofluorescence was applied to investigate the effects of ATL-II on MF. RT qPCR was used to detect the Collagen I, α-SMA, Fibronectin, and Vimentin mRNA expression levels in myocardial slices. The effect ATL-II on cardiomyocyte apoptosis was detected by TUNEL staining and western blot. An immunohistochemistry assay was conducted to detect α-SMA protein and TGF-ß1 protein. The contents of H2O2, GSH-PX, SOD, and MDA were measured by colorimetry. RESULTS: ATL-II could dose-dependently improve the BW of SHRs (P< 0.05) and enhance myocardial function. Moreover, ATL-II effectively reduced cardiomyocyte apoptosis in SHRs. Alternatively, ATL-II could inhibit the Collagen I, α-SMA, Fibronectin, and Vimentin mRNA and protein expression levels in SHRs. ATL-II could ameliorate oxidative stress by improving the activities of SOD and GSH-PX and lowering the contents of H2O2 and MDA in ATL-II-treated SHRs, which reach about 80%. CONCLUSION: ATL-II could exert an inhibiting effect on MF and oxidative stress in SHRs. Hence, ATL-II may hold promise for the treatment of MF and oxidative stress in Spontaneous Hypertension.


Asunto(s)
Fibronectinas , Hipertensión , Lactonas , Sesquiterpenos , Ratas , Animales , Fibronectinas/metabolismo , Vimentina/metabolismo , Peróxido de Hidrógeno , Ratas Endogámicas SHR , Hipertensión/tratamiento farmacológico , Fibrosis , Colágeno , ARN Mensajero/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38709266

RESUMEN

Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC. The role and mechanisms of AT-II were assessed through cell counting kit-8, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescence, and western blot experiments in Hep3B and Huh7 cells. In vivo experiments were conducted in BALB/c nude mice using immunohistochemistry and western blot assays. AT-II decreased the cell viability of Hep3B and Huh7 cells with a IC50 of 96.43 µM and 118.38 µM, respectively. AT-II increased relative Fe2+ level, which was further promoted with the incubation of erastin and declined with the ferrostatin-1 in Hep3B and Huh7 cells. AT-II enhanced the level of ROS and MDA, but reduced the GSH level, and the expression of xCT and GPX4. AT-II elevated the percent of CD8+ T cells and the IFN-γ contents, and declined the IL-10 concentrations and the expression of PD-L1 in Hep3B and Huh7 cells. AT-II downregulated the relative protein level of TRAF6, p-p65/p-65, and p-IkBα/IkBα, which was rescued with overexpression of TRAF6. Upregulation of TRAF6 also reversed the effect of AT-II on proliferation, ferroptosis, and immune escape in Hep3B cells. In vivo, AT-II reduced tumor volume and weight, the level of GPX4, xCT, and PD-L1, and the expression of TRAF6, p-p65/p-65, and p-IkBα/IkBα, with the increased expression of CD8. AT-II modulated the proliferation, ferroptosis, and immune escape of HCC cells by downregulating the TRAF6/NF-κB pathway.

8.
J Cancer ; 15(13): 4328-4344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947390

RESUMEN

Purpose: Atractylodes macrocephala Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells. Atractylenolides-II (AT-II) belongs to the lactone compound that is derived from Atractylodes macrocephala Koidz with anti-cancer activity. However, whether AT-II combined with IFN-γ modulates CRC progression and the underlying mechanisms remain unclear. The present study aimed to elucidate the efficacy and pharmaceutical mechanism of action of AT-II combined with IFN-γ synergistically against CRC by regulating the NF-kB p65/PD-L1 signaling pathway. Methods: HT29 and HCT15 cells were treated with AT-II and IFN-γ alone or in combination and cell viability, migration, and invasion were then analyzed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Furthermore, the underlying mechanism was investigated through western blot assay. The role of AT-II combined with IFN-γ on tumor growth and lung metastases was estimated in vivo. Finally, the population of lymphocytes in tumor tissues of lung metastatic C57BL/6 mice and the plasma cytokine levels were confirmed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results: AT-II or the combination IFN-γ significantly inhibited the growth and migration abilities of CRC cells in vitro and in vivo. The biological mechanisms behind the beneficial effects of AT-II combined with IFN-γ were also measured and inhibition of p38 MAPK, FAK, Wnt/ß-catenin, Smad, and NF-kB p65/PD-L1 pathways was observed. Moreover, AT-II combined with IFN-γ significantly inhibited HCT15 xenograft tumor growth and lung metastases in C57BL/6 mice, which was accompanied by lymphocyte infiltration into the tumor tissues and inflammatory response inactivation. Conclusions: The results showed that the AT-II in combination with IFN-γ could be used as a potential strategy for tumor immunotherapy in CRC. More importantly, the mechanism by which AT-II suppressed CRC progressions was by inhibiting the NF-kB p65/PD-L1 signal pathway.

9.
Cell Metab ; 35(1): 101-117.e11, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36525963

RESUMEN

sn-1,2-diacylglycerol (sn-1,2-DAG)-mediated activation of protein kinase Cε (PKCε) is a key pathway that is responsible for obesity-related lipid metabolism disorders, which induces hepatic insulin resistance and type 2 diabetes. No small molecules have been previously reported to ameliorate these diseases through this pathway. Here, we screened and identified the phytochemical atractylenolide II (AT II) that reduces the hepatic sn-1,2-DAG levels, deactivates PKCε activity, and improves obesity-induced hyperlipidemia, hepatosteatosis, and insulin resistance. Furthermore, using the ABPP strategy, the diacylglycerol kinase family member DGKQ was identified as a direct target of AT II. AT II may act on a novel drug-binding pocket in the CRD and PH domains of DGKQ to thereby allosterically regulate its kinase activity. Moreover, AT II also increases weight loss by activating DGKQ-AMPK-PGC1α-UCP-1 signaling in adipose tissue. These findings suggest that AT II is a promising lead compound to improve obesity-induced insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Proteína Quinasa C-epsilon/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diglicéridos/metabolismo , Obesidad/tratamiento farmacológico
10.
J Ethnopharmacol ; 277: 114183, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991638

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The dried rhizome of Atractylodes lancea (Thumb.) DC. (Compositae) has been prescribed in folk medicine for the management of various inflammatory conditions such as rheumatic diseases, gastritis and hepatitis. However, the molecular mechanisms underlying the beneficial properties of this herb remain elusive. AIM OF THE STUDY: In this study, we investigated the anti-gastritis activities of Al-EE (an ethanolic extract of the herb) and explored the mechanism of action. MATERIALS AND METHODS: An ethanolic extract of the Atractylodes lancea (Thumb.) DC. (Compositae) rhizome, Al-EE, was prepared with ethanol (95%) and quality controlled using HPLC analysis. To determine the in vivo effects of this extract, we utilised a HCl/EtOH-induced gastritis rat model. In vitro assays were carried out using a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell model. MTT assays were used to examine cell viability, while Griess assays were carried out to measure nitric oxide (NO) production. Messenger RNA expression was examined by real-time PCR. Prostaglandin E2 (PGE2) production was examined using ELISA assays. To examine protein expression and enzymatic activities, we employed western blot analysis. Nuclear transcription factor (NF)-κB activity was determined by Luciferase reporter assays. RESULTS: The content of atractylenolide (AT)-1 and AT-2 in Al-EE was 0.45% and 5.07% (w/w), respectively (Supplementary Fig. 1). Al-EE treatment suppressed the production of NO and PGE2, reduced the mRNA expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α, while also reducing the protein levels of iNOS and COX-2 in RAW264.7 macrophage cells. Furthermore, Al-EE inhibited the nuclear protein levels of NF-κB (p65) and NF-κB-driven luciferase reporter gene activity in RAW264.7 macrophage cells. Critically, intra-gastric injection of Al-EE (25 mg/kg) attenuated HCl/EtOH-induced gastric damage in SD rats, while the phosphorylation of Akt and IκBα was suppressed by Al-EE in vitro and in vivo. CONCLUSION: In summary, Al-EE has significant anti-gastritis effects in vivo and in vitro, which can be associated with the inhibition of the Akt/IκBα/NF-κB signalling pathway. This mechanistic finding provides a pharmacological basis for the use of the A. lancea rhizome in the clinical treatment of various inflammatory conditions.


Asunto(s)
Antiinflamatorios/farmacología , Atractylodes/química , Gastritis/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Etanol/química , Gastritis/patología , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Rizoma , Transducción de Señal/efectos de los fármacos
11.
Biochem Pharmacol ; 177: 114007, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360309

RESUMEN

Ionizing radiation (IR) can act as a negative factor for human homeostasis, by causing and even aggravating a series of pathological conditions. To protect the intactness of normal tissues, effective anti-radiation drugs are urgently needed for alleviating the outcomes of radioactive damage. In this study, we demonstrate that atractylenolide II (ATR II), a sesquiterpenoid monomer extracted from traditional Chinese medicine atractylodes macrocephala, can markedly suppress IR damage by promoting the expression of antioxidant factors heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone oxido-reductase 1 (NQO-1), which are mediated by nuclear factor-erythroid 2-like 2 (Nrf2) signaling pathway. Furthermore, here we reveal that ATR II effectively upregulates the expression of mitogen-activated protein kinase p38 (MAPKp38), which also acts as a regulator of Nrf2 signaling cascade. Indeed, treatment with a MAPKp38 inhibitor can significantly downregulate the expression of Nrf2 and its downstream target genes HO-1 and NQO-1 and, consequently, abolish the protective effect of ATR II against IR. Consistently, ATR II also has a protective function against IR-induced damage in animal models. In conclusion, our study provides an unexpected function of ATR II in preventing IR-induced damage by modulating MAPKp38/Nrf2 signaling pathway.


Asunto(s)
Queratinocitos/efectos de los fármacos , Lactonas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Traumatismos por Radiación/prevención & control , Sesquiterpenos/farmacología , Animales , Antioxidantes/metabolismo , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/farmacología , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Piridinas/farmacología , Traumatismos por Radiación/metabolismo , Radiación Ionizante , Protectores contra Radiación/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
J Ethnopharmacol ; 228: 18-25, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30218812

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Atractylodes chinensis (DC.) kodiz (Compositae) has traditionally been used to treat inflammatory disorders such as arthritis and stomach ache, but scanted report has been issued on its anti-inflammatory mechanisms. AIM OF THE STUDY: Here, we investigated the anti-gastritis activities and explored the mechanism of action of an ethanolic extract of the herb (Ac-EE). MATERIALS AND METHODS: Ac-EE was prepared with 95% ethanol. To determine its in vivo effects, we employed an HCl/EtOH-induced gastritis rat model. We used a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage model for in vitro assays. Griess and MTT assays were used to measure nitric oxide (NO) production and cell viability, respectively. We used real-time PCR to determine mRNA levels. To measure prostaglandin E2 (PGE2) production we used a PGE2 EIA kit. To estimate protein levels and enzyme activities, we employed immunoblotting. Luciferase assays were used to examine nuclear transcription factor (NF)-κB activities. RESULTS: Intragastric administration of Ac-EE (30 mg/kg) ameliorated HCl/EtOH-induced stomach tissue damages in SD rats. Ac-EE inhibited the levels of NO and PGE2, down regulated mRNA and protein levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Ac-EE suppressed the nuclear level of NF-κB (p50), and inhibited NF-κB luciferase activity. The Phosphorylation of Akt and IκBα was also inhibited by Ac-EE both in vivo and in vitro. CONCLUSION: Ac-EE treatment exerts an anti-gastritis effect in rats. Inhibition of the Akt/IκBα/NF-κB signaling pathway is associated with this effect, providing a pharmacological basis for the clinical application of the rhizome of A. chinensis in the treatment of inflammatory diseases.


Asunto(s)
Atractylodes , Gastritis/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Dinoprostona/metabolismo , Etanol/química , Gastritis/inducido químicamente , Gastritis/patología , Ácido Clorhídrico , Masculino , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fitoterapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Ratas Sprague-Dawley , Rizoma/química , Transducción de Señal/efectos de los fármacos , Solventes/química
13.
J Ethnopharmacol ; 210: 179-191, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28866044

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sijunzi decoction (SJZD) is a well known traditional Chinese prescription used for the treatment of gastrointestinal disorders and immunity enhancement. It has been found to indeed improve life quality of chemotherapy patients and extensive used in clinical conbined with chemotherapeutics for the treatment of cancer. AIM OF THE STUDY: The aim of this study was to investigate the preventive effect of the immunotoxicity of SJZD on mitomycin C (MMC) and the metabolic mechanism of action. MATERIALS AND METHODS: NMR and MS-based metabolomics approaches were combined for monitoring MMC-induced immunotoxicity and the protective effect of SJZD. Body weight change and mortality, histopathological observations and relative viscera weight determinations of spleen and thymus, sternum micronucleus assay and hematological analysis were used to confirm the immunotoxicity and attenuation effects. An OPLS-DA approach was used to screen potential biomarkers of immunotoxicity and the MetaboAnalyst and KEGG PATHWAY Database were used to investigate the metabolic pathways. RESULTS: 8 biomarkers in plasma samples, 19 in urine samples and 10 in spleen samples were identified as being primarily involved in amino acid metabolism, carbohydrate metabolism and lipid metabolism. The most critical pathway was alanine, aspartate and glutamate metabolism. CONCLUSIONS: The variations in biomarkers revealed the preventive effect of the immunotoxicity of SJZD on MMC and significant for speculating the possible metabolic mechanism.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Medicamentos Herbarios Chinos/farmacología , Sistema Inmunológico/efectos de los fármacos , Mitomicina/toxicidad , Animales , Biomarcadores/metabolismo , Masculino , Espectrometría de Masas , Metabolómica/métodos , Espectroscopía de Protones por Resonancia Magnética , Ratas , Ratas Sprague-Dawley
14.
Oncotarget ; 8(44): 77500-77514, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29100404

RESUMEN

In the studies of chemoprevention, the Nrf2-ARE signaling pathway has received widespread attention due to its anti-inflammatory and anti-oxidation effects. Our previous study indicated that atractylenolide II, which is an active component of Atractylodes macrocephala Koidz, is a potential activator of Nrf2-ARE signaling pathway. In this study, we observed that atractylenolide II significantly increased Nrf2 expressing, nuclear translocation and the expression of its downstream detoxifying enzymes, thus decreasing 17ß-Estradiol induced malignant transformation in MCF 10A cells, and we found that atractylenolide II acted through JNK/ERK-Nrf2-ARE pathway. Furthermore, atractylenolide II significantly reduced N-Nitroso-N-methylurea induced tumor incidence, multiplicity and volume, with activation of Nrf2-ARE pathway and decreased inflammation and oxidative stress in rat mammary tissue. Collectively, our results suggested that atractylenolide II could protect against mammary tumorigenesis both in vivo and in vitro via activating Nrf2-ARE signaling pathway, which supported atractylenolide II as a novel chemopreventive agent of breast cancer.

15.
J Ethnopharmacol ; 190: 1-12, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27235019

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shen-Ling-Bai-Zhu Powder (SLBZP) is a classic traditional Chinese medical formula that has been used for several decades in the treatment of patients with gastrointestinal malignancies. Whether SLBZP is best employed as single agent or adjunctive therapy has yet to be determined as does the mechanism whereby SLBZP exerts its anti-tumor effects. AIM OF THE STUDY: To investigate the effects of SLBZP alone and in combination with Cytoxan (CTX) on tumor growth, malignant cell apoptosis and Akt/Nuclear Factor kappa B (NF-КB) signaling in a murine model of hepatocellular carcinoma (HCC) receiving chemotherapy. MATERIALS AND METHODS: Sixty-four adult mice developed HCC following subcutaneous inoculation with H22 hepatocellular carcinoma cells. Seven days later, all received chemotherapy with CTX (200mg/kg) once. Mice were then randomized into eight study groups (N=8/group). Three groups were treated with different concentrations of SLBZP alone (6.00, 3.00, 1.5g/kg), three with SLBZP (6.00, 3.00, 1.5g/kg) plus CTX (20mg/kg), one with CTX (20mg/kg) alone (positive control), and one with physiologic saline (untreated, negative control). All groups were treated for 14 days. Tumor size, histology and serum or tissue levels and/or mRNA expression of PDGF-BB, VEGF, Ang-1, Ang-2, NF-КB, B-cell lymphoma-2 (Bcl-2); B-cell lymphoma-extra large (Bcl-xL); X-linked inhibitor of apoptosis (XIAP), Survivin, Caspase-3, Caspase-9, Caspase-7, Akt and phosphorylated Akt expression were documented at the end of treatment. RESULTS: Compared to untreated negative controls, tumor sizes were decreased in the CTX alone, SLBZP (M)+CTX and SLBZP (H)+CTX groups (-52%,-53% and -58% respectively). Tumor cell density was decreased in all treated groups but most apparent in the SLBZP (H)+CTX group. Electron microscopic evidence of apoptosis was also most apparent in this group. Serum and/or tissue levels and expression of PDGF-BB, VEGF, Ang-1, Ang-2, their downstream signaling proteins and anti-apoptotic markers were lowest and pro-apoptotic markers highest in SLBZP (H)+CTX treated mice. CONCLUSIONS: In this chemotherapy-induced animal model of HCC, SLBZP was most efficacious as adjunctive therapy and appears to act by inhibiting tumor growth promoters and anti-apoptotic proteins while enhancing pro-apoptotic proteins.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Cisplatino/farmacología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/ultraestructura , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/ultraestructura , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Carga Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA