Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 243: 117752, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008202

RESUMEN

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Asunto(s)
Azadirachta , Suelo , Suelo/química , Árboles , Ecosistema , Carbono/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/análisis , Hojas de la Planta
2.
Pestic Biochem Physiol ; 199: 105778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458685

RESUMEN

With their remarkable bioactivity and evolving commercial importance, plant secondary metabolites (PSMs) have gained significant research interest in recent years. Plant tissue culture serves as a credible tool to examine how abiotic stresses modulate the production of PSMs, enabling clear insights into plant stress responses and the prospects for controlled synthesis of bioactive compounds. Azadirachta indica, or neem has been recognized as a repository of secondary metabolites for centuries, particularly for the compound named azadirachtin, due to its bio-pesticidal and high antioxidant properties. Introducing salt stress as an elicitor makes it possible to enhance the synthesis of secondary metabolites, specifically azadirachtin. Thus, in this research, in vitro callus cultures of neem were micro-propagated and induced with salinity stress to explore their effects on the production of azadirachtin and identify potential proteins associated with salinity stress through comparative shotgun proteomics (LCMS/MS). To induce salinity stress, 2-month-old calli were subjected to various concentrations of NaCl (0.05-1.5%) for 4 weeks. The results showed that the callus cultures were able to adapt and survive in the salinity treatments, but displayed a reduction in fresh weight as the NaCl concentration increased. Notably, azadirachtin production was significantly enhanced in the salinity treatment compared to control, where 1.5% NaCl-treated calli produced the highest azadirachtin amount (10.847 ± 0.037 mg/g DW). The proteomics analysis showed that key proteins related to primary metabolism, such as defence, energy, cell structure, redox, transcriptional and photosynthesis, were predominantly differentially regulated (36 upregulated and 93 downregulated). While a few proteins were identified as being regulated in secondary metabolism, they were not directly involved in the synthesis of azadirachtin. In conjunction with azadirachtin elicitation, salinity stress treatment could therefore be successfully applied in commercial settings for the controlled synthesis of azadirachtin and other plant-based compounds. Further complementary omics approaches can be employed to enhance molecular-level modifications, to facilitate large-scale production of bioactive compounds in the future.


Asunto(s)
Azadirachta , Limoninas , Azadirachta/química , Azadirachta/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteómica , Limoninas/farmacología
3.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731401

RESUMEN

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Asunto(s)
Azadirachta , Dihidroorotato Deshidrogenasa , Simulación del Acoplamiento Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Esquistosomiasis , Azadirachta/química , Animales , Esquistosomiasis/tratamiento farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Simulación de Dinámica Molecular , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación por Computador , Esquistosomicidas/farmacología , Esquistosomicidas/química , Esquistosomicidas/uso terapéutico , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Praziquantel/farmacología , Praziquantel/química , Praziquantel/uso terapéutico
4.
Fish Physiol Biochem ; 50(4): 1445-1460, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795269

RESUMEN

Bacterial pathogens cause high fish mortalities and in turn economic losses in fish farms. Innovative strategies should be applied to control bacterial infections instead of antibiotics to avoid the resistance problem. Consequently, the present investigation studied the curative potential of Azadirachta indica leave ethanolic extract (AILEE) on Aeromonas veronii infection in Oreochromis niloticus. A preliminary trial was assessed to evaluate the curative dose of AILEE which was found to be 2.5 mg/L. One hundred and sixty fish were divided into equal four groups in four replications, where group 1 and group 2 were non-challenged and treated with 0- and 2.5-mg/L AILEE, respectively. Group 3 and group 4 were challenged with A. veronii and treated with 0- and 2.5-mg/L AILEE, respectively for 10 days. A. veronii infection produced severe clinical manifestations and a high mortality rate in the infected fish. Furthermore, the infected fish exhibited a significant rise in the hepatorenal indices (aspartate aminotransferase, alanine aminotransferase, and creatinine), the oxidant biomarker (malondialdehyde), and the stress indicators (glucose and cortisol). A significant reduction in the protein profile and antioxidant/immune parameters (catalase, immunoglobulin M, lysozyme, nitric oxide, and phagocytic activity) was observed in the infected fish. Water application of the infected group to 2.5-mg/L AILEE notably ameliorated the hepatorenal indices, the oxidant biomarker, and the stress indicators. Furthermore, AILEE improved the antioxidant/immune indices. Water application of 2.5-mg/L AILEE could be useful against A. veronii infection in O. niloticus culture.


Asunto(s)
Aeromonas veronii , Azadirachta , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Extractos Vegetales , Hojas de la Planta , Animales , Azadirachta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Aeromonas veronii/efectos de los fármacos , Hojas de la Planta/química , Etanol/química
5.
J Food Sci Technol ; 61(1): 178-191, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192709

RESUMEN

Starch-based biofilms with embedded nanoparticles (NPs) are used to wrap food in biodegradable packaging system that has high antibacterial action against a variety of microorganisms. In this study, ZnO NPs were synthesised using both a green synthesis approach utilising Azadirachta indica (Neem) and a chemical synthesis approach using the sol-gel technique. The structural and morphological properties of all synthesized NPs were characterized through XRD, UV-VIS, UV-DRS, FTIR, and FESEM analysis. Further, these NPs were employed in the development of starch-based biodegradable films. A meticulous comparative analysis was performed to evaluate the functional properties of the nanocomposites, encompassing crucial parameters such as film thickness, moisture content, swelling index, opacity, solubility, water vapor permeability, and tensile strength. In comparison to films embedded with chemically synthesised NPs (F1), nanocomposite with green synthesised NPs (F2) showed 15.27% greater inhibition against Escherichia coli growth and 22.05% stronger inhibition against Staphylococcus aureus bacterial strains. Based on the biodegradability analysis, the nanocomposite film-F2 showed a 53.33% faster degradation rate compared to the film-F1. The developed films were utilized to assess the quality of both wrapped and unwrapped grapes, leading to the generalization of the research for the development of starch-based antibacterial and environmentally friendly food packaging material. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05834-9.

6.
J Mol Recognit ; 36(10): e3051, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594180

RESUMEN

The green production of silver nanoparticles (AgNPs) produces AgNPs with minimum influence on the environment by using plant components such as alkaloids, carbohydrates, lipids, enzymes, flavonoids, terpenoids, and polyphenols as reducing agents. In the present investigation, Azadirachta indica leaf extract was used to form AgNPs from a 1 mM silver nitrate solution. The plan proved to be incredibly straightforward, cost-effective, and effective. The production of the nanoparticles was observed visually, where the colorless fluid turns into a brown-colored solution. Further research was carried out using x-ray diffraction, Fourier-transform infrared analysis, scanning electron microscopy, and transmission electron microscopy (TEM) in addition to UV-visible spectroscopy. The size range of AgNPs determined by TEM was 10-30 nm. When the diffusion technique was employed to demonstrate the antibacterial effect of AgNPs on various pathogens, the zones of inhibition for Staphylococcus aureus, Bacillus cereus, and Escherichia coli, when 50 g of AgNPs were used were 16, 12, and 17 mm, respectively. By examining the leakage of reducing sugars and proteins, the mechanism by which nanoparticle antibacterial properties were explored, showed that AgNPs were capable of lowering membrane permeability.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Simulación del Acoplamiento Molecular , Plata , Antibacterianos/farmacología , Escherichia coli , Extractos Vegetales/farmacología
7.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33834183

RESUMEN

Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is important for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is relative to cellular proliferation and responsible for aggressive malignancy in various cancers. Mechanistically, inhibition of MCM7 significantly reduces the cellular proliferation associated with cancer. To date, no effective small molecular candidate has been identified that can block the progression of cancer induced by the MCM7 protein. Therefore, the study has been designed to identify small molecular-like natural drug candidates against aggressive malignancy associated with various cancers by targeting MCM7 protein. To identify potential compounds against the targeted protein a comprehensive in silico drug design including molecular docking, ADME (Absorption, Distribution, Metabolism and Excretion), toxicity, and molecular dynamics (MD) simulation approaches has been applied. Seventy phytochemicals isolated from the neem tree (Azadiractha indica) were retrieved and screened against MCM7 protein by using the molecular docking simulation method, where the top four compounds have been chosen for further evaluation based on their binding affinities. Analysis of ADME and toxicity properties reveals the efficacy and safety of the selected four compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed to the protein-ligand complex structure, which confirmed the stability of the selected three compounds including CAS ID:105377-74-0, CID:12308716 and CID:10505484 to the binding site of the protein. In the study, a comprehensive data screening process has performed based on the docking, ADMET properties, and MD simulation approaches, which found a good value of the selected four compounds against the targeted MCM7 protein and indicates as a promising and effective human anticancer agent.


Asunto(s)
Azadirachta/química , Informática/métodos , Componente 7 del Complejo de Mantenimiento de Minicromosoma/antagonistas & inhibidores , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Algoritmos , Sitios de Unión , Detección Precoz del Cáncer , Humanos , Ligandos , Componente 7 del Complejo de Mantenimiento de Minicromosoma/química , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Plantas Medicinales/química , Unión Proteica , Dominios Proteicos , Termodinámica
8.
Phytochem Anal ; 34(7): 855-868, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337376

RESUMEN

INTRODUCTION: Azadirachta indica A. Juss. is a well-known medicinal plant that has been used traditionally to cure various ailments in every corner of the globe. There are many in vitro and in vivo experimental evidences in connection with the bioactivity of the extracts of this plant. Lung cancer is the deadliest form of cancer and contributes to the most cancer related deaths. The mode of action of anticancer components of this plant is still to be established explicitly. OBJECTIVE: The objective of this study is to identify druggable targets of active constituents of A. indica A. Juss. for non-small cell lung cancer (NSCLC) using network pharmacology and validation of activity through molecular docking analysis. METHODOLOGY: Targets of all the active phytochemicals from A. indica were predicted and genes related to NSCLC were retrieved. A protein-protein interaction (PPI) network of the overlapping genes were prepared. Various databases and servers were employed to analyse the disease pathway enrichment analysis of the clustered genes. Validation of the gene/protein activity was achieved by performing molecular docking, and ADMET profiling of selected phytocompounds was performed. RESULT: Gene networking revealed three key target genes as EGFR, BRAF and PIK3CA against NSCLC by the active components of A. indica. Molecular docking and ADMET analysis further validated that desacetylnimbin, nimbandiol, nimbin, nimbinene, nimbolide, salannin and vepinin are the best suited anti- NSCLC among all the phytocompounds present in this plant. CONCLUSION: The present study has provided a better understanding of the pharmacological effects of active components from A. indica and its potential therapeutic effect on NSCLC.


Asunto(s)
Azadirachta , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Azadirachta/química , Farmacología en Red , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
9.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985821

RESUMEN

Acne vulgaris is a common skin disorder with a complicated etiology. Papules, lesions, comedones, blackheads, and other skin lesions are common physical manifestations of Acne vulgaris, but the individual who has it also regularly has psychological repercussions. Natural oils are being utilized more and more to treat skin conditions since they have fewer negative effects and are expected to provide benefits. Using network pharmacology, this study aims to ascertain if neem oil has any anti-acne benefits and, if so, to speculate on probable mechanisms of action for such effects. The neem leaves (Azadirachta indica) were collected, verified, authenticated, and assigned a voucher number. After steam distillation was used to extract the neem oil, the phytochemical components of the oil were examined using gas chromatography-mass spectrometry (GC-MS). The components of the oil were computationally examined for drug-likeness using Lipinski's criteria. The Pharm Mapper service was used to anticipate the targets. Prior to pathway and protein-protein interaction investigations, molecular docking was performed to predict binding affinity. Neem oil was discovered to be a potential target for STAT1, CSK, CRABP2, and SYK genes in the treatment of Acne vulgaris. In conclusion, it was discovered that the neem oil components with PubChem IDs: ID_610088 (2-(1-adamantyl)-N-methylacetamide), ID_600826 (N-benzyl-2-(2-methyl-5-phenyl-3H-1,3,4-thiadiazol-2-yl)acetamide), and ID_16451547 (N-(3-methoxyphenyl)-2-(1-phenyltetrazol-5-yl)sulfanylpropanamide) have strong affinities for these drug targets and may thus be used as therapeutic agents in the treatment of acne.


Asunto(s)
Acné Vulgar , Azadirachta , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Terpenos/química , Acné Vulgar/tratamiento farmacológico , Azadirachta/química
10.
J Contemp Dent Pract ; 24(9): 692-699, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38152944

RESUMEN

AIM: To compare the clinical and radiographically mixture of zinc oxide with Aloe vera, Curcumin and neem as an obturating material for pulpectomy. MATERIALS AND METHODS: The study comprised of age group 4-8 years children requiring endodontic treatment for at least a single primary molar tooth. Sixty primary molar teeth from 43 children were divided equally and randomly into four study groups. The materials used for obturation were zinc oxide powder (ZnO) and Eugenol (ZOE) (group I), ZnO and Aloe vera Gel (group II), ZnO and Curcumin Powder (group III), ZnO and neem extract (group IV). They were evaluated clinically and radiographically at immediate postoperative and then at 1-, 3-, 6-, and 9-month intervals. RESULTS: At the end of 9 months, the Chi-square test revealed 100% success rate for recovery of pain in group I and III, 66.66% in group II and 93.3% in group IV. The success rates for absence of abscess and for periradicular radiolucency in group I, III, and group IV were 100% and 66.6% for group II. The success rate for periapical radiolucency in group I and group III was 100%, in group II 66.6% and in group IV 93.35%. The success rate for all the groups shows 100% success in terms of pathological root resorption. CONCLUSION: Zinc oxide eugenol has proven to be the best obturating material. ZnO with Aloe vera showed a success rate which is significantly lower than the other medicaments. ZnO with Curcumin and ZnO with neem had shown promising clinical and radiographical results. CLINICAL SIGNIFICANCE: ZnO with Curcumin and ZnO with neem can be used as a root canal filling material in primary teeth with further follow-up studies.


Asunto(s)
Curcumina , Materiales de Obturación del Conducto Radicular , Óxido de Zinc , Niño , Humanos , Preescolar , Óxido de Zinc/uso terapéutico , Eugenol , Curcumina/uso terapéutico , Polvos , Diente Primario , Cemento de Óxido de Zinc-Eugenol/uso terapéutico , Materiales de Obturación del Conducto Radicular/uso terapéutico , Pulpectomía/métodos
11.
Saudi Pharm J ; 31(10): 101749, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663591

RESUMEN

Background & Objectives: Wound healing is the complex physiological process of replacing damaged cells or tissue layers. The neem (Azadirachta Indica) has a variety of biological activities, which may hasten the rate at which the wound healing mechanism occurs. Silk fibroin is a biomaterial that is reported for its tissue regeneration activity. So, the present study was designed to assess the effectiveness of a hydrogel comprising neem and silk fibroin biomaterials for the treatment of wounds. Methods: Topical neem hydrogels (N-HG) with and without silk fibroin (N-SFB-HG) were prepared using neem extract, silk fibroin, and guar gum, which act by entrapping the components by forming a gel. Evaluation tests such as Fourier transform infrared spectroscopy (FT-IR), visual emergence, pH, rheological behavior, spreading capacity, drug content, skin irritation, anti-microbial action, in vivo wound healing activity, and stability were carried out. Results: The FT-IR results showed no chemical interaction between the constituents. The formed hydrogels had pH values of 5.87 ± 0.3 for N-HG and 5.76 ± 0.2 for N-SFB-HG. The preferred topical gel viscosity was observed in the N-HG (54.2 ± 3.2cPs) and N-SFB-HG (59.9 ± 4.8cPs) formulations. The formulated hydrogels were sterile and did not irritate the skin. The in vivo wound healing investigation results reveal that the N-SF-HG treatment speeds up the regeneration of the injured area faster when compared to control and N-HG treated groups. Interpretation & Conclusion: These results support the efficacy of the topical hydrogel formulation, including neem and silk fibroin. Therefore, the neem-silk fibroin hydrogel formulation is a therapeutically viable choice that, following necessary clinical research, might be utilized in novel formulations for managing chronic wounds.

12.
Indian J Microbiol ; 63(4): 494-512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031617

RESUMEN

Nimbolide, a tetranortriterpenoid (limonoid) compound isolated from the leaves of Azadirachta indica, was screened both in vitro and in silico for its antimicrobial activity against Fusarium oxysporum f. sp. cubense, Macrophomina phaseolina, Pythium aphanidermatum, Xanthomonas oryzae pv. oryzae, and insecticidal activity against Plutella xylostella. Nimbolide exhibited a concentration-dependent, broad spectrum of antimicrobial and insecticidal activity. P. aphanidermatum (82.77%) was more highly inhibited than F. oxysporum f. sp. cubense (64.46%) and M. phaseolina (43.33%). The bacterium X. oryzae pv. oryzae forms an inhibition zone of about 20.20 mm, and P. xylostella showed about 66.66% mortality against nimbolide. The affinity of nimbolide for different protein targets in bacteria, fungi, and insects was validated by in silico approaches. The 3D structure of chosen protein molecules was built by homology modelling in the SWISS-MODEL server, and molecular docking was performed with the SwissDock server. Docking of homology-modelled protein structures shows most of the chosen target proteins have a higher affinity for the furan ring of nimbolide. Additionally, the stability of the best-docked protein-ligand complex was confirmed using molecular dynamic simulation. Thus, the present in vitro and in silico studies confirm the bioactivity of nimbolide and provide a strong basis for the formulation of nimbolide-based biological pesticides. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01104-6.

13.
Environ Res ; 208: 112684, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34995544

RESUMEN

The Azadirachta indica is an excellent and pharmaceutically valuable phytochemicals enriched traditional medicinal plant. The purpose of the research was to assess the ability of A. indica aqueous kernel extract to synthesize silver nanoparticles as well as their anti-inflammatory and anti-diabetic activity in vitro. The obtained results state that the aqueous kernel extract of A. indica can fabricate the silver nanoparticles and be confirmed by standard analytical techniques. Under UV-visible spectrophotometer analysis, the absorbance peak was found at 430 nm was related to the surface plasmon resonance of silver nanoparticles. The FTIR (Fourier-transform infrared spectroscopy) analysis revealed that numbers of functional groups belong to the pharmaceutically valuable phytochemicals, which act as reducing, capping, and stabilizing agent on silver nanoparticles synthesis. The size and shape of the silver nanoparticles were examined as 19.27-22.15 nm and spherical in shape. Interestingly, this kernel fabricated silver nanoparticles possess a reasonable anti-inflammatory (69.77%) and anti-diabetic (73.5%) activity at 100 µg mL-1 and these were partially comparable with standards (anti-inflammatory: 81.15%; anti-diabetic: 87.9%). Thus, the aqueous kernel extract fabricated silver nanoparticles can be considered for further in-vivo study to assess the practical possibility to promote as a pharmaceutical agent.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Antiinflamatorios/farmacología , Azadirachta/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Hojas de la Planta , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
14.
Int J Phytoremediation ; 24(13): 1444-1454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35113751

RESUMEN

Crude oil/petroleum hydrocarbons (PHs) are major pollutants worldwide. In the present study, three bacterial isolates -Pseudomonas aeruginosa BB-BE3, P. aeruginosa BBBJ, and Gordonia amicalis BB-DAC were selected for their efficient hydrocarbon degradation and plant growth promotion (PGP) abilities. All three isolates were positive for siderophore production, phosphate solubilization, and IAA production, even in the presence of crude oil. The rhizoremediation ability was validated through pot trials where all three isolates promoted the growth of the Azadirachta indica plant in crude oil-contaminated soils. Treatment with the combination of the plant (A. indica) and bacteria, i.e., Pseudomonas aeruginosa BB-BE3; P. aeruginosa BBBJ; Gordonia amicalis BB-DAC showed 95.71, 93.28, and 89.88% removal of TPHs respectively, while the treatment with the plant (only) resulted in 13.44% removal of TPHs whereas, in the control (Sterile bulk soil + Crude oil), the hydrocarbon removal percentage was only 5.87%. The plant tissues were analyzed for catalase (CAT) and peroxidase (POX) activities, and the plants augmented with bacterial strains had significantly low CAT and POX activities as compared to uninoculated control. Therefore, the results suggest that the A. indica plant, in symbiotic association with these hydrocarbonoclastic rhizobacteria, could be used for bioremediation of crude oil-polluted soil.


The main objective of the present study is to evaluate the potential of plant­microbe associations, also including Gordonia amicalis with the Azadirachta indica, for the rhizoremediation of petroleum hydrocarbon (PHs) polluted soil. For rhizoremediation strategy, a stable plant-bacteria partnership is important, along with effective remediation, and the Gordonia amicalis­Azadirachta indica pair is being described here for the first time, for this purpose. This plant-microbe pair was highly effective as also validated through pot trials. The hydrocarbonoclastic rhizobacteria (G. amicalis BB-DAC), in symbiotic association with the A. indica plant, has significantly degraded TPHs.


Asunto(s)
Alphaproteobacteria , Azadirachta , Petróleo , Contaminantes del Suelo , Petróleo/metabolismo , Suelo , Rizosfera , Biodegradación Ambiental , Catalasa/metabolismo , Sideróforos/metabolismo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Hidrocarburos/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Alphaproteobacteria/metabolismo , Fosfatos/metabolismo
15.
J Microencapsul ; 39(7-8): 638-653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398734

RESUMEN

This study aimed to formulate the green, sustainable, and ecofriendly nanobiopesticides of Azadirachta indica with enhanced pest control efficacy. Nanoprecipitation method was used for the development of nanobiopesticides. Optimisation was done by response surface methodology. Nanoformulations were characterised by zetasizer, scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. Pesticidal potential of nanosuspensions was evaluated by insecticide impregnated filter paper method. Optimised nanobiopesticide showed an average particle size of 275.8 ± 0.95 nm, polydispersity index (PDI) 0.351 ± 0.002, and zeta potential of -33 ± 0.90 mV. Nanobiopesticides exhibited significantly higher mortality rates of 86.81 ± 3.04 and 84.97 ± 2.83% against Tribolium castaneum and Ryzopertha dominica, respectively, as compared to their crude extract. Minor change in particle size from 275.8 ± 0.95 to 298.8 ± 1.00 nm and PDI from 0.351 ± 0.002 to 0.445 ± 0.02 were observed after 3 months of storage at 4 °C. Pesticidal efficacy of A. indica was significantly enhanced by the formulation of its nanobiopesticides.


Asunto(s)
Azadirachta , Escarabajos , Insecticidas , Plaguicidas , Tribolium , Animales , Triticum , Dominica , Insecticidas/farmacología , Plaguicidas/farmacología
16.
J Stored Prod Res ; 99: 102024, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36466545

RESUMEN

Smallholder farmers in Bangladesh often use low-density polyethylene (LDPE) bags contained within woven polypropylene bags to store wheat seed during the summer monsoon that precedes winter season planting. High humidity and temperature during this period can encourage increased seed moisture and pests, thereby lowering seed quality. Following a farm household survey conducted to inform trial design, eighty farmers were engaged in an action research process in which they participated in designing and conducting trials comparing traditional and alternative seed storage methods over 30 weeks. Factorial treatments included comparison of hermetic SuperGrainbags® (Premium RZ) against LDPE bags, both with and without the addition of dried neem tree leaves (Azadirachta indica). SuperGrainbags® were more effective in maintaining seed moisture at acceptable levels close to pre-storage conditions than LDPE bags. Both seed germination and seedling coleoptile length were significantly greater in hermetic than LDPE bags. Neem had no effect on seed moisture, germination, or coleoptile length. SuperGrainbags® were also more effective in abating seed damage during storage, although inclusion of neem within LDPE bags also had significant damage. Quantification of seed predating insects and diseases suggested that SuperGrainbags® also suppressed Coleopteran pests and blackspot, the latter indicative of Fusarium graminearum. Conversely, where farmers used LDPE bags, neem also had an additional though limited pest suppressive effect. Post-storage treatment scoring by farmers revealed a strong preference for SuperGrainbags® and no preference differences for or against neem. This study demonstrates a process by which farmers can be involved in the participatory co-design and testing of alternative wheat storage options, and stresses the need to develop SuperGrainbag® supply chains so hermetic storage can be made widely available.

17.
Molecules ; 27(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431873

RESUMEN

The present study aims to identify and quantify the phenolic compounds of Azadirachta indica leaf extract using HPLC-MS and to evaluate the antioxidant, antibacterial (against different Gram-positive and negative bacteria) and in vitro anti-proliferative activities of this extract (against breast, human liver and cervix adenocarcinoma-derived cells). The application of this extract as a natural antioxidant for food preservation was also tested on oil-in-water food emulsions for the first time in the present work in order to determine the use of Azadirachta indica leaves as a natural additive to preserve the food against lipid oxidation and rancidity. The results obtained revealed that 50%-aqueous ethanol leaf extract showed the best extraction yield (25.14%), which was characterized by a high content in phenolic compounds and strong antioxidant activity. Moreover, this leaf extract inhibited the growth of the bacterial strains tested (Staphylococcus aureus, Escherichia coli, Salmonella paratyphi and Micrococcus luteus) and showed better anti-proliferative activity against breast and cervix adenocarcinoma-derived cells than human liver cancer cells after 48 h of treatment. Additionally, Azadirachta indica leaf extract showed almost similar effects as gallic acid solutions (0.25% and 0.5%) in preserving the oxidation of oil-in-water food emulsions and prevented the formation of secondary oxidation products (malondialdehyde) as well. The results obtained suggested that extracts of Azadirachta indica leaves are a potential source of antioxidant and antibacterial compounds and pointed to the potential of these natural extracts as therapeutic agents.


Asunto(s)
Adenocarcinoma , Azadirachta , Femenino , Humanos , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Emulsiones/farmacología , Antibacterianos/farmacología , Fenoles/farmacología , Bacterias , Agua/farmacología
18.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364070

RESUMEN

Rice is the most important staple food crop feeding more than 50% of the world's population. Rice blast is the most devastating fungal disease, caused by Magnaporthe oryzae (M. oryzae) which is widespread in rice growing fields causing a significant reduction in the yield. The present study was initiated to evaluate the effect of green synthesized silver nanoparticles (AgNPs) on the biochemical constituents of rice plants infected with blast. AgNPs were synthesized by using Azadirachta indica leaf extract and their characterization was performed using UV-visible spectroscopy, particle size analyser (PSA), scanning electron microscope (SEM), and X-ray diffraction (XRD) which confirmed the presence of crystalline, spherical shaped silver nanoparticles with an average size of 58.9 nm. After 45 days of sowing, artificial inoculation of rice blast disease was performed. After the onset of disease symptoms, the plants were treated with AgNPs with different concentrations. Application of nanoparticles elevated the activity of antioxidative enzymes such as superoxide dismutase, catalase, peroxidase, glutathione reductase, and phenylalanine ammonia-lyase compared to control plants, and total phenol and reducing sugars were also elevated. The outcome of this study showed that an increase in all biochemical constituents was recorded for A. indica silver nanoparticles-treated plants. The highest values were recorded in 30 ppm and 50 ppm AgNPs-treated plants, which showed the highest resistance towards the pathogen. Green synthesized AgNPs can be used in future for disease control in susceptible varieties of rice. The synthesized AgNPs using A. indica leaf extract have shown promising antibacterial activity when tested against 14 multidrug-resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) with a good zone of inhibition diameter, tested with the disc diffusion method. Based on these findings, it appears that A. indica AgNPs have promise as an antibacterial agent effective against MDR pathogens.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Agua/farmacología
19.
Prep Biochem Biotechnol ; 52(5): 534-539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34528862

RESUMEN

The majority of the naturally occurring antioxidants are obtained from plant sources. The antioxidant activity is mostly exhibited by polyphenols present in the plant cells. Azadirachta Indica (Neem) leaves are renowned for their medicinal applications due to their anti-inflammatory, antimalarial, antifungal, antibacterial, antiviral, antioxidant, and anticarcinogenic properties. This work aims to optimize the extraction of Azadirachta Indica (Neem) leaf antioxidants using three-phase partitioning (TPP). The optimized conditions are operating time 15 minutes, slurry ratio 1:30 (g/mL), salt concentration 30% (w/v), aqueous to solvent ratio 1:1.5 (v/v), and stirring speed 400 rpm that infer 74.66% extraction yield. Additionally, ultrasonic pretreatment was also employed to increase the extraction yield up to 86.61%. Sonication pretreatment for 4 min operated at 30 W power, and 75% duty cycle was observed to offer maximum antioxidant extraction about 3.3 mg/g.


Asunto(s)
Azadirachta , Antioxidantes , Extractos Vegetales , Hojas de la Planta , Polifenoles
20.
Prep Biochem Biotechnol ; 52(1): 99-107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33890844

RESUMEN

The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.


Asunto(s)
Antimaláricos/química , Azadirachta/química , Extractos Vegetales/química , Nitrato de Plata/química , Antimaláricos/síntesis química , Antimaláricos/farmacología , Tecnología Química Verde , Humanos , Malaria Falciparum/tratamiento farmacológico , Nanopartículas/química , Plasmodium falciparum/efectos de los fármacos , Nitrato de Plata/síntesis química , Nitrato de Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA