RESUMEN
We report a fatal case of New Delhi metallo-ß-lactamase (NDM)-producing Escherichia coli in a bacteremic patient with sequential failure of aztreonam plus ceftazidime-avibactam followed by cefiderocol. Acquired resistance was documented phenotypically and mediated through preexisting and acquired mutations. This case highlights the need to rethink optimal treatment for NDM-producing organisms.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Bacteriemia , Cefiderocol , Ceftazidima , Cefalosporinas , Combinación de Medicamentos , Infecciones por Escherichia coli , Escherichia coli , Insuficiencia del Tratamiento , beta-Lactamasas , Humanos , Compuestos de Azabiciclo/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Aztreonam/uso terapéutico , Aztreonam/administración & dosificación , Aztreonam/farmacología , Ceftazidima/uso terapéutico , Ceftazidima/administración & dosificación , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Resultado Fatal , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Cefalosporinas/uso terapéutico , Cefalosporinas/administración & dosificación , Pruebas de Sensibilidad Microbiana , Masculino , Farmacorresistencia Bacteriana MúltipleRESUMEN
We report identification of 5 patients with infections caused by NDM-5-producing Escherichia coli harboring PBP3 mutations that showed reduced susceptibility to aztreonam-avibactam and cefiderocol. Durlobactam, a novel diazabicyclooctane ß-lactamase inhibitor, demonstrated minimum inhibitory concentrations ranging from 0.5 to 2â µg/mL supporting future investigations into a potential role in clinical management.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Infecciones por Escherichia coli , Escherichia coli , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas de Unión a las Penicilinas , beta-Lactamasas , Humanos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Estados Unidos , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Masculino , Femenino , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Persona de Mediana Edad , Aztreonam/farmacología , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , Combinación de Medicamentos , Anciano , Cefiderocol , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismoRESUMEN
Gram-negatives harboring metallo-ß-lactamases (MBLs) and extended-spectrum ß-lactamases (ESBLs) pose a substantial risk to the public health landscape. In ongoing efforts to combat these "superbugs," we explored the clinical combination of aztreonam and ceftazidime/avibactam together with varying dosages of polymyxin B and imipenem against Klebsiella pneumoniae (Kp CDC Nevada) in a 9-day hollow fiber infection model (HFIM). As previously reported by our group, although the base of aztreonam and ceftazidime/avibactam alone leads to 3.34 log10 fold reductions within 72 hours, addition of polymyxin B or imipenem to the base regimen caused maximal killing of 7.55 log10 and 7.4 log10 fold reduction, respectively, by the 72-hour time point. Although low-dose polymyxin B and imipenem enhanced the bactericidal activity as an adjuvant to aztreonam +ceftazidime/avibactam, regrowth to ~9 log10CFU/mL by 216 hours rendered these combinations ineffective. When aztreonam +ceftazidime/avibactam was supplemented with high-dose polymyxin B and or low-dose polymyxin B + imipenem, it resulted in effective long-term clearance of the bacterial population. Time lapse microscopy profiled the emergence of long filamentous cells in response to PBP3 binding due to aztreonam and ceftazidime. The emergence of spheroplasts via imipenem and damage to the outer membrane via polymyxin B was visualized as a mechanism of persister killing. Despite intrinsic mgrB and blaNDM-1 resistance, polymyxin B and ß-lactam combinations represent a promising strategy. Future studies using an integrated molecularly precise pharmacodynamic approach are warranted to unravel the mechanistic details to propose optimal antibiotic combinations to combat untreatable, pan-drug-resistant Gram-negatives.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Ceftazidima , Combinación de Medicamentos , Imipenem , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Polimixina B , beta-Lactamasas , Klebsiella pneumoniae/efectos de los fármacos , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , Compuestos de Azabiciclo/farmacología , Antibacterianos/farmacología , Ceftazidima/farmacología , Aztreonam/farmacología , Polimixina B/farmacología , Imipenem/farmacología , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Quimioterapia CombinadaRESUMEN
We evaluated the in vitro activity of meropenem-vaborbactam plus aztreonam (MEV-ATM) against 140 metallo-ß-lactamase (MBL)-producing Klebsiella pneumoniae isolates. Among them, 25 isolates (17.9%) displayed minimum inhibitory concentrations (MIC) ≥ 8 µg/mL, while 112 (80.0%) had MIC ≤ 2 µg/mL. Genomic analysis and subsequent gene cloning experiments revealed OmpK36 134-135GD-insertion and increased carbapenemase gene (blaNDM-1 and blaOXA-48-like) copy numbers are the main factors responsible for MEV-ATM non-susceptibility. Notably, MEV-ATM is actively against aztreonam-avibactam-resistant mutants due to CMY-16 mutations.
Asunto(s)
Antibacterianos , Aztreonam , Ácidos Borónicos , Meropenem/farmacología , Aztreonam/farmacología , Antibacterianos/farmacología , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana , Compuestos de Azabiciclo/farmacologíaRESUMEN
Carbapenem resistance due to metallo-ß-lactamases (MBLs) such as the Verona integron-encoded metallo-ß-lactamase (VIM) is particularly problematic due to the limited treatment options. We describe a case series of bacterial infections in a tertiary care hospital due to multi-species acquisition of a VIM gene along with our experience using novel ß-lactam antibiotics and antibiotic combinations to treat these infections. Four patients were treated with the combination of ceftazidime-avibactam and aztreonam, with no resistance to the combination detected. However, cefiderocol-resistant Klebsiella pneumoniae isolates were detected in two out of the five patients who received cefiderocol within 3 weeks of having started the antibiotic. Strain pairs of sequential susceptible and resistant isolates from both patients were analyzed using whole-genome sequencing. This analysis revealed that the pairs of isolates independently acquired point mutations in both the cirA and fiu genes, which encode siderophore receptors. These point mutations were remade in a laboratory strain of K. pneumoniae and resulted in a significant increase in the MIC of cefiderocol, even in the absence of a beta-lactamase enzyme or a penicillin-binding protein 3 (PBP3) mutation. While newer ß-lactam antibiotics remain an exciting addition to the antibiotic armamentarium, their use must be accompanied by diligent monitoring for the rapid development of resistance.
Asunto(s)
Unidades de Quemados , Cefiderocol , Humanos , Ceftazidima , Antibacterianos/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Klebsiella pneumoniae , Combinación de Medicamentos , Compuestos de Azabiciclo , Carbapenémicos/farmacología , Brotes de Enfermedades , Pruebas de Sensibilidad MicrobianaRESUMEN
Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.
Asunto(s)
Inhibidores de beta-Lactamasas , beta-Lactamas , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/farmacología , Doripenem , Agar , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Penicilinas , Ácido Clavulánico/farmacología , Imipenem/farmacología , Agua , Pruebas de Sensibilidad MicrobianaRESUMEN
The emergence of metallo-ß-lactamase (MBL)-producing Enterobacterales presents unique clinical treatment challenges. Recently developed ß-lactam/ ß-lactamase inhibitor combination agents, while effective against other carbapenemase-producing organisms, are notably ineffective against MBL producers. While MBLs do not hydrolyze monobactams (aztreonam), many MBL-producing organisms are resistant to aztreonam through alternate mechanisms, leaving cefiderocol as the sole monotherapy treatment option recommended for MBL producers. Recent guidelines for the treatment of MBL-harboring organisms have added combination therapy with aztreonam and ceftazidime-avibactam, using ceftazidime-avibactam as a source of the ß-lactamase inhibitor avibactam. Current laboratory testing options for the combination of aztreonam-avibactam are limited to broth microdilution (BMD) and broth disk elution (BDE) methods, which are not practical in most clinical laboratories. In this study, we evaluated the performance of aztreonam/avibactam gradient strips on 103 MBL-producing Enterobacterales patient isolates as well as an additional 31 isolates from the CDC AR Bank. All MBL Enterobacterales patient isolates included in this study harbored a New Delhi metallo-ß-lactamase (blaNDM) gene. Essential agreement of gradient strip minimal inhibitory concentrations (MICs) for patient isolates compared to BMD was 93.2%. While there are no established breakpoints for aztreonam-avibactam, category agreement (CA) for patient isolates was 97.1% when using the CLSI aztreonam breakpoints. There were no major or very major errors observed. There were three minor errors. Precision for aztreonam-avibactam gradient strip diffusion was 100%. These data demonstrate that the use of gradient strip diffusion for aztreonam-avibactam MIC determination in MBL-producing Enterobacterales is a viable option for clinical laboratories.
RESUMEN
OBJECTIVES: The emergence of carbapenem-resistant Pseudomonas putida (CRPP) has raised public awareness. This study investigated two strains from the Pseudomonas putida group that were resistant to carbapenem, tigecycline, and aztreonam-avibactam (ATM-AVI), with a focus on their microbial and genomic characteristics. METHODS: We assessed the antibiotic resistance profile using broth dilution, disk diffusion, and E-test methods. Efflux pump phenotype testing and real-time quantitative PCR were employed to evaluate efflux pump activity in tigecycline resistance, while polymerase chain reaction was utilized to detect common carbapenem genes. Additionally, whole-genome sequencing was performed to analyze genomic characteristics. The transferability of blaIMP-1 and blaAFM-4 was assessed through a conjugation experiment. Furthermore, growth kinetics and biofilm formation were examined using growth curves and crystal violet staining. RESULTS: Both strains demonstrated resistance to carbapenem, tigecycline, and ATM-AVI. Notably, NMP can restore sensitivity to tigecycline. Subsequent analysis revealed that they co-produced blaIMP-1, blaAFM-4, tmexCD-toprJ, and blaOXA-1041, belonging to a novel sequence type ST268. Although they were closely related on the phylogenetic tree, they exhibited different levels of virulence. Genetic environment analysis indicated variations compared to prior studies, particularly regarding the blaIMP-1 and blaAFM-4 genes, which showed limited horizontal transferability. Moreover, it was observed that temperature exerted a specific influence on their biological factors. CONCLUSION: We initially identified two P. putida ST268 strains co-producing blaIMP-1, blaAFM-4, blaOXA-1041, and tmexCD-toprJ. The resistance to tigecycline and ATM-AVI can be attributed to the presence of multiple drug resistance determinants. These findings underscore the significance of P. putida as a reservoir for novel antibiotic resistance genes. Therefore, it is imperative to develop alternative antibiotic therapies and establish effective monitoring of bacterial resistance.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Pruebas de Sensibilidad Microbiana , Pseudomonas putida , Tigeciclina , beta-Lactamasas , Pseudomonas putida/genética , Pseudomonas putida/efectos de los fármacos , Tigeciclina/farmacología , Antibacterianos/farmacología , China , Aztreonam/farmacología , Compuestos de Azabiciclo/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Secuenciación Completa del Genoma , Humanos , Combinación de Medicamentos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/microbiología , Carbapenémicos/farmacologíaRESUMEN
The combination of ceftazidime-avibactam (CAZ-AVI) and aztreonam (ATM) is used to treat MBL-producing Enterobacterales-related infections. The new combination aztreonam-avibactam (AZA) is currently in development. We compared results obtained with the new MIC test strip (MTS) AZA (Liofilchem) with broth microdilution method (BMD) on 41 MBL-producing Enterobacterales from 41 clinical samples. The MTS AZA was also compared to combination testing method using CAZ-AVI and ATM strips. Compared to BMD, categorical agreement (CA) was 100%. Compared with combination testing method, CA was 97.6%. The MTS AZA can be used to determine MICs levels of AZA or CAZ-AVI/ATM combinations.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Humanos , Aztreonam/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/uso terapéutico , beta-Lactamasas , Combinación de Medicamentos , Pruebas de Sensibilidad MicrobianaRESUMEN
Stenotrophomonas maltophilia is challenging to treat due to the presence of multiple intrinsic and acquired resistance mechanisms. TMP-SMZ is the standard care of therapy for treating S. maltophilia infections; levofloxavin and minocycline are the preferred potential alternatives. Recently, in 2024, CLSI has lowered the susceptibility breakpoints for minocycline against S. maltophilia. Applying the revised minocycline's susceptibility breakpoint of ≤ 1 mg/L, susceptibility to minocycline dropped significantly from 77% (previous breakpoint, ≤ 4 mg/L) to 35% (revised breakpoint of ≤ 1 mg/L). In the wake of this change, minocycline's dependency has been questioned for treating S. maltophilia infections.
RESUMEN
PURPOSE: Aztreonam/avibactam is effective against serious infections caused by Gram-negative bacteria including Enterobacterales harboring metallo-ß-lactamases. While the utility of this combination has been established in vitro and in clinical trials, the purpose of this study is to enhance our understanding of the underlying mechanism responsible for their activities through metabolomic profiling of a multidrug-resistant Escherichia coli clinical isolate. METHODS: Metabolomic analyses of time-dependent changes in endogenous bacterial metabolites in a clinical isolate of a multidrug-resistant E. coli treated with aztreonam and avibactam were performed. E. coli metabolomes were compared at 15 min, 1 h and 24 h following treatments with either avibactam (4 mg/L), aztreonam (4 mg/L), or aztreonam (4 mg/L) + avibactam (4 mg/L). RESULTS: Drug treatment affected 326 metabolites with magnitude changes of at least 2-fold, most of which are involved primarily in peptidoglycan biosynthesis, nucleotide metabolism, and lipid metabolism. The feedstocks for peptidoglycan synthesis were depleted by aztreonam/avibactam combination; a significant downstream increase in nucleotide metabolites and a release of lipids were observed at the three timepoints. CONCLUSION: The findings indicate that the aztreonam/avibactam combination accelerates structural damage to the bacterial membrane structure and their actions were immediate and sustained compared to aztreonam or avibactam alone. By inhibiting the production of crucial cell wall precursors, the combination may have inflicted damages on bacterial DNA.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Escherichia coli , Metabolómica , Aztreonam/farmacología , Compuestos de Azabiciclo/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/genética , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Metaboloma/efectos de los fármacosRESUMEN
PURPOSE: Amongst all etiologic hospital-acquired infection factors, K. pneumoniae strains producing New Delhi metallo-ß-lactamase (KP-NDM) belong to pathogens with the most effective antibiotic resistance mechanisms. Clinical guidelines recommend using ceftazidime/avibactam with aztreonam (CZA + AT) as the preferred option for NDM-producing Enterobacterales. However, the number of observations on such treatment regimen is limited. This retrospective study reports the clinical and microbiological outcomes of 23 patients with KP-NDM hospital-acquired infection treated with CZA + AT at a single center in Poland. METHODS: The isolates were derived from the urine, lungs, blood, peritoneal cavity, wounds, and peritonsillar abscess. In microbiological analysis, mass spectrometry for pathogen identification, polymerase chain reaction, or an immunochromatographic assay for detection of carbapenemase, as well as VITEK-2 system, broth microdilution, and microdilution in agar method for antimicrobial susceptibility tests were used, depending of the pathogens' nature. CZA was administered intravenously (IV) at 2.5 g every eight hours in patients with normal kidney function, and aztreonam was administered at 2 g every eight hours IV. Such dosage was modified when renal function was reduced. RESULTS: KP-NDM was eradicated in all cases. Four patients (17.4%) died: three of them had a neoplastic disease, and one - a COVID-19 infection. CONCLUSION: The combination of CZA + AT is a safe and effective therapy for infections caused by KP-NDM, both at the clinical and microbiological levels. The synergistic action of all compounds resulted in a good agreement between the clinical efficacy of CZA + AT and the results of in vitro susceptibility testing.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Ceftazidima , Combinación de Medicamentos , Infecciones por Klebsiella , Klebsiella pneumoniae , beta-Lactamasas , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Aztreonam/farmacología , Aztreonam/uso terapéutico , beta-Lactamasas/metabolismo , Masculino , Compuestos de Azabiciclo/uso terapéutico , Compuestos de Azabiciclo/farmacología , Femenino , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Ceftazidima/uso terapéutico , Ceftazidima/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Polonia , Pruebas de Sensibilidad Microbiana , Adulto , Anciano de 80 o más Años , Resultado del Tratamiento , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiologíaRESUMEN
PURPOSE: Carbapenemase-producing Enterobacterales are a growing threat, and very few therapeutic options remain active against those multidrug resistant bacteria. Aztreonam is the molecule of choice against metallo-beta-lactamases (MBL) producers since it is not hydrolyzed by those enzymes, but the co-production of acquired plasmidic cephalosporinases or extended-spectrum ß-lactamases leading to aztreonam resistance may reduce the efficacy of this molecule. Hence, the development of the aztreonam-avibactam (AZA) combination provides an interesting therapeutic alternative since avibactam inhibits the activity of both cephalosporinases and extended-spectrum ß-lactamases. However, structural modifications of penicillin binding protein PBP3, the target of aztreonam, may lead to reduced susceptibility to aztreonam-avibactam. METHODS: Here the impact of various plasmid-encoded AmpC-type ß-lactamases (ACC-1, ACT-7, ACT-17, CMY-2, CMY-42, DHA-1, FOX-1, and FOX-5) on susceptibility to aztreonam-avibactam was evaluated using isogenic E. coli MG1655 strains harboring insertions in PBP3 (YRIN and YRIK). The inhibitory activity of various ß-lactamase inhibitors (clavulanic acid, tazobactam, avibactam, relebactam, and vaborbactam) were also compared against these enzymes. RESULTS: Hence, we showed that reduced susceptibility to AZA was due to the combined effect of both AmpC production and amino acid insertions in PBP3. The highest resistance level was achieved in strains possessing the insertions in PBP3 in association with the production of ACT-7, ACC-1, or CMY-42. CONCLUSION: Although none of the recombinant strains tested displayed clinical resistance to aztreonam-avibactam, our data emphasize that the occurrence of such profile might be of clinical relevance for MBL-producing strains.
RESUMEN
INTRODUCTION: Understanding the dynamics that may characterize the emergence of KPC variants with resistance to novel ß-lactam/ß-lactamase inhibitor combinations (ßL/ßLICs) represents a challenge to be overcome in the appropriate use of recently introduced antibiotics. METHODS: Retrospective case series describing development of multiple resistance to novel ßL/ßLICs in patients with KPC-producing Klebsiella pneumoniae (KPC-Kp) infections treated with these drugs. Clinical-microbiological investigation and characterization of longitudinal strains by Whole-Genome Sequencing were performed. RESULTS: Four patients with KPC-Kp bloodstream infections were included. Most frequent clinical features were kidney disease, obesity, cardiac surgery as reason for admission, ICU stay, treatment with ceftazidime/avibactam, and pneumonia and/or acute kidney injury needing renal replacement therapy as KPC-Kp sepsis-associated complications. The development of resistance to ceftazidime/avibactam was observed in four longitudinal strains (three of which were co-resistant to aztreonam/avibactam and cefiderocol) following treatments with ceftazidime/avibactam (n = 3) or cefiderocol (n = 1). Resistance to meropenem/vaborbactam and imipenem/cilastatin/relebactam was observed in one case after exposure to ceftazidime/avibactam and imipenem/cilastatin/relebactam. Resistome analysis showed that resistance to novel ßL/ßLICs was related to specific mutations within blaKPC carbapenemase gene (D179Y mutation [KPC-33]; deletion Δ242-GT-243 [KPC-14]) in three longitudinal strains, while porin loss (truncated OmpK35 and OmpK36 porins) was observed in one case. CONCLUSION: Therapy with novel ßL/ßLICs or cefiderocol may lead to the selection of resistant mutants in the presence of factors influencing the achievement of PK/PD targets. KPC variants are mainly associated with resistance to ceftazidime/avibactam, and some of them (e.g. KPC-14) may also be associated with reduced susceptibility to aztreonam/avibactam and/or cefiderocol. Loss of function of the OmpK35 and OmpK36 porins appears to play a role in the development of resistance to meropenem/vaborbactam and/or imipenem/relebactam, but other mechanisms may also be involved.
RESUMEN
PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Ceftazidima , Combinación de Medicamentos , Enterobacter cloacae , Infecciones por Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Aztreonam/farmacología , Aztreonam/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/microbiología , Animales , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Humanos , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Quimioterapia Combinada , Mariposas Nocturnas/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Modelos Animales de EnfermedadRESUMEN
Monocyclic ß-lactams are stable to a number of ß-lactamases and are the focus of researchers for the development of antibacterial drugs, particularly against Enterobacterales. We recently synthesized and reported the bactericidal activity of diverse series of aztreonam appended with amidine moieties as siderophores. One of the derivatives exhibiting the highest MIC value in vitro was selected for further preclinical studies. The compound DPI-2016 was reassessed for its synthetic routes and methods that were improved to find the maximum final yields aimed at large-scale synthesis. In addition, the results of the pharmacological studies were determined with reference to aztreonam. It has been found that the compound DPI-2016 showed comparable or slightly improved ADMET as well as pharmacokinetic parameters to aztreonam. It is estimated that the compound could be a potential lead for further clinical evaluation.
Asunto(s)
Aztreonam , Monobactamas , Monobactamas/farmacología , Aztreonam/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas , Pruebas de Sensibilidad MicrobianaRESUMEN
BACKGROUND: A patient with an extensively drug-resistant (XDR) New Delhi metallo-ß-lactamase (NDM) and oxacillinase (OXA-48) producing Escherichia coli (E. coli) infection was awaiting orthotopic liver transplant. There is no standardized antibiotic prophylaxis regimen; however, in line with the Infectious Diseases Society of America guidance, an antibiotic prophylactic regimen of ceftazidime-avibactam 2.5 g TDS with aztreonam 2 g three times a day (TDS) IV was proposed. METHODS: The hollow fiber system (HFS) was applied to inform the individualized pharmacodynamic outcome likelihood prior to prophylaxis. RESULTS: A 4-log reduction in CFU/mL in the first 10 h of the regimen exposure was observed; however, the killing dynamics were slow and six 8-hourly infusions were required to reduce bacterial cells to below the limit of quantification. Thus, the HFS supported the use of the regimen for infection clearance; however, it highlighted the need for several infusions. Standard local practice is to administer prophylaxis antibiotics at induction of orthotopic liver transplantation (OLT); however, the HFS provided data to rationalize earlier dosing. Therefore, the patient was dosed at 24 h prior to their OLT induction and subsequently discharged 8 days after surgery. CONCLUSION: The HFS provides a dynamic culture solution for informing individualized medicine by testing antibiotic combinations and exposures against the bacterial isolates cultured from the patient's infection. .
RESUMEN
BACKGROUND: Aztreonam-avibactam (ATM-AVI) combination shows promising effectiveness on most carbapenemase-producing Gram-negatives, yet standardized antibiotic susceptibility testing (AST) methods for evaluating the combination in clinical laboratories is lacking. We aimed to evaluate different ATM-AVI AST approaches. METHODS: 96 characterized carbapenem-resistant clinical isolates belonging to 9 Enterobacterales (EB; n = 80) and P. aeruginosa (PA; n = 16) species, including 90 carbapenemase producers and 72 strains resistant to both CAZ-AVI and ATM, were tested. Paper disk elution (DE; Bio-Rad) and E-test gradient strips stacking (SS; bioMérieux) were performed for the ATM + CAZ-AVI combination. MIC Test Strip (MTS; Liofilchem) was evaluated for ATM-AVI MIC determination. Results were interpreted applying ATM clinical breakpoints of the EUCAST guidelines and compared to the broth microdilution method (Sensititre, Thermofisher). RESULTS: According to broth microdilution method, 93% of EB and 69% of PA were tested susceptible to ATM-AVI. The synergistic effect of ATM-AVI was of 95% for EB, but of only 17% for PA. The MTS method yielded higher categorical and essential agreement (CA/EA) rates for both EB (89%/91%) and PA (94%/94%) compared to SS, where the rates were 87%/83% for EB and 81%/81% for PA. MTS and SS yielded 2 and 3 major discrepancies, respectively, while 3 very major discrepancies each were observed for both methods. Concerning the DE method, CA reached 91% for EB and 81% for PA, but high number of very major discrepancies were observed for EB (n = 6; 8%) and for PA (n = 3; 19%). CONCLUSIONS: The ATM-AVI association displayed excellent in vitro activity against highly resistant clinical Enterobacterales strains. MTS method offers accurate ATM-AVI AST results, while the SS method might serve as better alternative then DE method in assessing the efficacy of ATM + CAZ-AVI combination. However, further investigation is needed to confirm the methods' ability to detect ATM-AVI resistance.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Aztreonam/farmacología , Compuestos de Azabiciclo/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Antibacterianos/farmacología , Humanos , Bacterias Gramnegativas/efectos de los fármacos , Combinación de Medicamentos , Pseudomonas aeruginosa/efectos de los fármacos , beta-Lactamasas/metabolismo , Enterobacteriaceae/efectos de los fármacos , Proteínas Bacterianas , Infecciones por Bacterias Gramnegativas/microbiologíaRESUMEN
INTRODUCTION: Limited experience exists with ceftazidime-avibactam (CAZ-AVI) in treating bacteremia caused by carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA) in hematological patients. METHODS: We performed a single-center, retrospective, observational study including patients who received CAZ-AVI for bacteremia due to CRE or CRPA between 2018 and 2022. The primary outcome was 30-day survival. We conducted a multivariable analysis to identify predictors of survival. RESULTS: 56 patients were included and 57 (41 CRE and 16 CRPA) strains were isolated. 35 strains produced carbapenemase, including 25 metallo-beta-lactamase (MBL) and 10 serine-beta-lactamase. 48 patients (85.7 %) received combination therapy. All patients with MBL-CRE bacteremia (n = 24) received combination therapy with aztreonam (AZT). The susceptibility rates to CAZ-AVI were only 26.8 % (11/41) in CRE and 80.0 % (8/10) in CRPA. The 30-day survival rates were 85.0 % (34/40) in the CRE group and 81.3 % (13/16) in the CRPA group. In patients with MBL-CRE bacteremia, the 30-day survival was as high as 91.7 % (22/24) due to combination with AZT. Ceftazidime did not influence the activity of aztreonam-avibactam against MBL-CRE in-vitro. Multivariable cox analysis revealed neutropenia >14 days (P = 0.002, HR: 34.483, 95%CI: 3.846-333.333) and a higher Pitt bacteremia score (P = 0.005, HR: 2.074, 95%CI: 1.253-3.436) were risk factors for 30-day survival. CONCLUSIONS: CAZ-AVI is highly effective in treating bacteremia due to CRPA and serine-beta-lactamase CRE. The combination of avibactam with AZT is highly effective in treating bacteremia due to AZT-resistant MBL producers.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Bacteriemia , Ceftazidima , Combinación de Medicamentos , Pseudomonas aeruginosa , Humanos , Ceftazidima/uso terapéutico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Bacteriemia/mortalidad , Estudios Retrospectivos , Femenino , Compuestos de Azabiciclo/uso terapéutico , Persona de Mediana Edad , Masculino , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Anciano , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Adulto , Pruebas de Sensibilidad Microbiana , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , beta-Lactamasas/metabolismo , Quimioterapia Combinada/métodos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/mortalidad , Infecciones por Pseudomonas/microbiologíaRESUMEN
BACKGROUND: Metallo-ß-lactamases (MBL)-producing Enterobacterales are increasing worldwide. Our aim was to describe clinical features, treatments and outcomes of infections by MBL-Enterobacterales. METHODS: Prospective observational study conducted in the Pisa University Hospital (Jan 2019-Oct 2022) including patients with MBL-producing Enterobacterales infections. The primary outcome measure was 30-day mortality. A multivariable Cox regression analysis was performed to identify factors associated with 30-day mortality. Adjusted hazard ratio (aHR) (95% confidence intervals, CI) were calculated. RESULTS: 343 patients were included: 15 VIM- and 328 NDM-producing Enterobacterales infections. Overall, 199 (58%) were bloodstream infections, 60 (17.5%) hospital-acquired/ventilator-associated pneumonias, 60 (17.5%) complicated urinary tract infections, 13 (3.8%) intra-abdominal infections, 11 (3.2%) skin and soft tissue infections. Thirty-day mortality was 29.7%. Thirty-two patients did not receive in vitro active antibiotic therapy, 215/343 (62.7%) received ceftazidime-avibactam (CZA) plus aztreonam (ATM), 33/343 (9.6%) cefiderocol-containing regimens, 26/343 (7.6%) colistin-containing regimens and 37 (10.8%) other active antibiotics. On multivariable analysis, septic shock (aHR 3.57, 95% CI 2.05-6.23, p<0.001) and age (aHR 1.05, 95% CI 1.03-1.08, p<0.001) were independently associated with 30-day mortality, while in vitro active antibiotic therapy within 48 hours from infection (aHR 0.48, 95% CI 0.26-0.8, p=0.007) and source control (aHR 0.43, 95% CI 0.26-0.72, p=0.001) were protective factors. Sensitivity analysis showed that CZA plus ATM compared to colistin was independently associated with reduced 30-day mortality (aHR 0.39, 95% CI 0.18-0.86, p=0.019). Propensity score analyses confirmed these findings. CONCLUSIONS: MBL-CRE infections are associated with high 30-day mortality rates. Patients with MBL-producing Enterobacterales infections should received early active antibiotic therapy.