Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(7): e108397, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35156727

RESUMEN

While PAX5 is an important tumor suppressor gene in B-cell acute lymphoblastic leukemia (B-ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5-JAK2 encodes a protein consisting of the PAX5 DNA-binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5-JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5Jak2/+ mice rapidly developed an aggressive B-ALL in the absence of another cooperating exogenous gene mutation. The DNA-binding function and kinase activity of Pax5-Jak2 as well as IL-7 signaling contributed to leukemia development. Interestingly, all Pax5Jak2/+ tumors lost the remaining wild-type Pax5 allele, allowing efficient DNA-binding of Pax5-Jak2. While we could not find evidence for a nuclear role of Pax5-Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5Jak2/+ B-ALL tumors, implying that nuclear Pax5-Jak2 phosphorylates STAT5. Together, these data reveal Pax5-Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.


Asunto(s)
Janus Quinasa 2 , Leucemia de Células B , Factor de Transcripción PAX5 , Factor de Transcripción STAT5 , Animales , Janus Quinasa 2/genética , Leucemia de Células B/genética , Ratones , Mutación , Factor de Transcripción PAX5/genética , Factor de Transcripción STAT5/genética , Translocación Genética
2.
Genes Dev ; 32(11-12): 849-864, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29907650

RESUMEN

Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.


Asunto(s)
Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Mutación , Nitrilos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas , Interferencia de ARN , Receptores de Citocinas/genética , Transcriptoma , Triazoles/farmacología
3.
Cancer Immunol Immunother ; 73(6): 104, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630258

RESUMEN

Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We present a retrospective study of 67 patients with R/R B-ALL who received anti-CD19 CAR T-cell therapy, 41 (61.2%) patients received G-CSF (G-CSF group), while 26 (38.8%) did not (non-G-CSF group). Patients had similar duration of grade 3-4 neutropenia between the two groups. The incidences of CRS and NEs were higher in G-CSF group, while no differences in severity were found. Further stratified analysis showed that the incidence and severity of CRS were not associated with G-CSF administration in patients with low bone marrow (BM) tumor burden. None of the patients with low BM tumor burden developed NEs. However, there was a significant increase in the incidence of CRS after G-CSF administration in patients with high BM tumor burden. The duration of CRS in patients who used G-CSF was longer. There were no significant differences in response rates at 1 and 3 months after CAR T-cell infusion, as well as overall survival (OS) between the two groups. In conclusion, our results showed that G-CSF administration was not associated with the incidence or severity of CRS in patients with low BM tumor burden, but the incidence of CRS was higher after G-CSF administration in patients with high BM tumor burden. The duration of CRS was prolonged in G-CSF group. G-CSF administration was not associated with the efficacy of CAR T-cell therapy.


Asunto(s)
Síndromes de Neurotoxicidad , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Inmunoterapia Adoptiva/efectos adversos , Estudios Retrospectivos , Síndrome de Liberación de Citoquinas , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Tratamiento Basado en Trasplante de Células y Tejidos
4.
BMC Med ; 22(1): 161, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616254

RESUMEN

BACKGROUND: To study the shared genetic structure between autoimmune diseases and B-cell acute lymphoblastic leukemia (B-ALL) and identify the shared risk loci and genes and genetic mechanisms involved. METHODS: Based on large-scale genome-wide association study (GWAS) summary-level data sets, we observed genetic overlaps between autoimmune diseases and B-ALL, and cross-trait pleiotropic analysis was performed to detect shared pleiotropic loci and genes. A series of functional annotation and tissue-specific analysis were performed to determine the influence of pleiotropic genes. The heritability enrichment analysis was used to detect crucial immune cells and tissues. Finally, bidirectional Mendelian randomization (MR) methods were utilized to investigate the casual associations. RESULTS: Our research highlighted shared genetic mechanisms between seven autoimmune disorders and B-ALL. A total of 73 pleiotropic loci were identified at the genome-wide significance level (P < 5 × 10-8), 16 of which had strong evidence of colocalization. We demonstrated that several loci have been previously reported (e.g., 17q21) and discovered some novel loci (e.g., 10p12, 5p13). Further gene-level identified 194 unique pleiotropic genes, for example IKZF1, GATA3, IKZF3, GSDMB, and ORMDL3. Pathway analysis determined the key role of cellular response to cytokine stimulus, B cell activation, and JAK-STAT signaling pathways. SNP-level and gene-level tissue enrichment suggested that crucial role pleiotropic mechanisms involved in the spleen, whole blood, and EBV-transformed lymphocytes. Also, hyprcoloc and stratified LD score regression analyses revealed that B cells at different developmental stages may be involved in mechanisms shared between two different diseases. Finally, two-sample MR analysis determined causal effects of asthma and rheumatoid arthritis on B-ALL. CONCLUSIONS: Our research proved shared genetic architecture between autoimmune disorders and B-ALL and shed light on the potential mechanism that might involve in.


Asunto(s)
Artritis Reumatoide , Asma , Enfermedades Autoinmunes , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Autoinmunes/genética
5.
Cancer Cell Int ; 24(1): 65, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336706

RESUMEN

INTRODUCTION: Pediatric T-cell acute lymphoblastic leukemia (T-ALL) poses significant challenges due to its aggressive nature and resistance to standard treatments. Long non-coding RNAs (lncRNAs) have emerged as potential biomarkers and therapeutic targets in leukemia. This study aims to characterize the lncRNA landscape in pediatric T-ALL, identify specific lncRNAs signatures, and assess their clinical relevance. METHODS: RNA sequencing was performed on T-ALL patient and control samples. Differential expression analysis identified dysregulated lncRNAs and mRNAs. Functional enrichment analysis revealed potential roles of these lncRNAs in cancer pathogenesis. Validation of candidate lncRNAs was conducted using real-time PCR. Clinical correlations were assessed, including associations with patients' clinical characteristics and survival outcomes. RESULTS: Analysis identified 674 dysregulated lncRNAs in pediatric T-ALL, with LINC01221 and CRNDE showing the most interactions in cancer progression pathways. Functional enrichment indicated involvement in apoptosis, survival, proliferation, and metastasis. Top 10 lncRNAs based on adjusted p value < 0.05 and Fold Change > 2 were selected for validation. Seven lncRNAs LINC01221, PCAT18, LINC00977, RP11-620J15.3, RP11-472G21.2, CTD-2291D10.4, and CRNDE showed correlation with RNA sequencing data. RP11-472G21.2 and CTD-2291D10.4 were highly expressed in T-ALL patients, with RP11-620J15.3 correlating significantly with better overall survival (p = 0.0007) at a median follow up of 32 months. The identified lncRNAs were further analysed in B-ALL patients. Distinct lncRNAs signatures were noted, distinguishing T-ALL from B-ALL and healthy controls, with lineage-specific overexpression of LINC01221 (p < 0.0001), RP11-472G21.2 (p < 0.001) and CRNDE (p = 0.04) in T-ALL. CONCLUSION: This study provides insights into the lncRNA landscape of pediatric T-ALL, offering potential diagnostic and prognostic markers. RP11-620J15.3 emerges as a promising prognostic marker, and distinct lncRNAs signatures may aid in the differentiation of T-ALL subtypes. Further research with larger cohorts is warranted to validate these findings and advance personalized treatment strategies for pediatric T-ALL patients.

6.
Cytotherapy ; 26(10): 1185-1192, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38804991

RESUMEN

This nationwide study retrospectively examined the center effect on allogeneic hematopoietic stem cell transplantation (allo-HSCT) for adult B-cell acute lymphoblastic leukemia. The cohort analyses were separated into Philadelphia chromosome (Ph)-positive and -negative cases. The patients were divided into low- and high-volume groups according to the number of allo-HSCTs at each facility. The primary endpoint was 5-year overall survival (OS). This study included 1156 low-volume and 1329 high-volume Ph-negative and 855 low-volume and 926 high-volume Ph-positive cases. In Ph-negative cases, 5-year OS was significantly higher in the high-volume centers at 52.7% (95% confidence interval [CI]: 49.9-55.5) versus 46.8% (95% CI: 43.8-49.7) for the low-volume centers (P < 0.01). Multivariate analysis identified high volume as a favorable prognostic factor (hazard ratio [HR]: 0.81 [95% CI: 0.72-0.92], P < 0.01). Subgroup analysis in Ph-negative cases revealed that the center effects were more evident in patients aged ≥40 years (HR: 0.72, 95% CI: 0.61-0.86, P < 0.01) and those receiving cord blood transplantation (HR: 0.62, 95% CI: 0.48-0.79, P < 0.01). In Ph-positive cases, no significant difference was observed between the high and low-volume centers for 5-year OS (59.5% [95% CI: 56.2-62.7] vs. 54.9% [95% CI: 51.3-58.3], P = 0.054). In multivariate analysis, center volume did not emerge as a significant prognostic indicator. This study showed center effects on survival in Ph-negative but not in Ph-positive cases, highlighting the heterogeneity of the center effect in allo-HSCT for B-cell acute lymphoblastic leukemia. Collaborative efforts among transplant centers and further validation are essential to improve outcomes.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trasplante Homólogo , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Trasplante Homólogo/métodos , Adolescente , Adulto Joven , Resultado del Tratamiento , Cromosoma Filadelfia , Pronóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad
7.
Hematol Oncol ; 42(1): e3251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287528

RESUMEN

Zinc finger protein 384 (ZNF384) rearrangement defined a novel subtype of B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of ZNF384 fusion transcript levels represented measurable residual disease remains to be explored. ZNF384 fusions were screened out in 57 adult B-ALL patients at diagnosis by real-time quantitative polymerase chain reaction and their transcript levels were serially monitored during treatment. The reduction of ZNF384 fusion transcript levels at the time of achieving complete remission had no significant impact on survival, whereas its ≥2.5-log reduction were significantly associated with higher relapse free survival (RFS) and overall survival (OS) rates after course 1 consolidation (p = 0.022 and = 0.0083) and course 2 consolidation (p = 0.0025 and = 0.0008). Compared with chemotherapy alone, allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly improved RFS and OS of patients with <2.5-log reduction after course 1 consolidation (p < 0.0001 and = 0.0002) and course 2 consolidation (p = 0.0003 and = 0.019), whereas exerted no significant effects in patients with ≥2.5-log reduction (all p > 0.05). ZNF384 fusion transcript levels after course 1 and course 2 consolidation strongly predict relapse and survival and may guide whether receiving allo-HSCT in adult B-ALL.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Pronóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Factores de Transcripción , Neoplasia Residual/diagnóstico , Recurrencia , Transactivadores/metabolismo , Transactivadores/uso terapéutico
8.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566191

RESUMEN

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transactivadores , Animales , Humanos , Ratones , Doxorrubicina , Proteína p300 Asociada a E1A , Interleucina-3 , Subunidad alfa del Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transactivadores/metabolismo
9.
Eur J Haematol ; 112(1): 75-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649264

RESUMEN

OBJECTIVE: Chimeric antigen receptor (CAR) T-cell therapy has transformed the treatment approach for pediatric patients suffering from relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, there was a paucity of data on the challenges associated with second-round CAR-T therapy in this population. METHODS: Medical records of nine pediatric patients who received second-round CAR-T therapy in a single center from June 2019 to May 2023 were analyzed. Throughout the course of the clinical trial, we evaluated adverse events including CRS, CRES, infections, hematologic toxicity, and organ injury, as well as CAR-T responses. RESULTS: Except for one patient who chose CART therapy due to testicular relapse, the remaining patients had indications for CAR-T therapy due to relapse with bone marrow alone or combined with other site. There were no difference between the transfusion dose of CART1 and CART2. No differences of incidence and grade of CRS was found between the first-round CAR-T therapy (CART1) and second-round CAR-T therapy (CART2). Additionally, we found that the incidence of CRES was higher for CART1(3/9,33.3%) than CART2(1/9,11.1%). Our findings revealed that there were no differences of IL-2, IL-4, IL-6, IL-10, IFN-γ, and TNF-α between CART1 and CART2, but the peak level of IL-17A was significantly higher in patients receiving CART1 compared to those receiving CART2 (p = .011). Early and late infection rates after CART1 were higher than CART2. Based on the dynamic changes of ANC, hemoglobin and platelet, ANC, and platelet were reduced obviously post CART. It seems that the incidences of severe thrombocytopenia and severe anemia were higher in the CART1 group compared to CART2. The MRD-negative CR rates for CART1 and CART2 are 100% and 44.4%, respectively (p = .029). All patients experienced events (relapse, chemotherapy, transplantation, or death) after receiving CART2, including one died, three discharged automatically, and the remaining five patients survived. CONCLUSION: Although the remission rate of CART2 is not as high as the CART1 due to the severity of the disease, its safety regarding CRS, CRES, infections, and organ injury is still excellent. Therefore, CART2 remains a viable option for treating pediatric relapsed B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Recurrencia , Tratamiento Basado en Trasplante de Células y Tejidos , Antígenos CD19
10.
Pediatr Blood Cancer ; 71(3): e30825, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38146039

RESUMEN

This single-center, retrospective study evaluated age as a risk factor for relapsed/refractory disease and/or death in 153 children with B-cell acute lymphoblastic leukemia. The study sample included children near the 10-year age cutoff for high-risk disease (6.0-13.9 years at diagnosis) and without other high-risk features (high white cell count, unfavorable cytogenetics). Children 10.0-13.9 years treated per high-risk protocols did not have inferior outcomes compared with children aged 6.0-9.9 years initiating treatment per standard-risk protocols. The study indicates that, in the era of cytogenetics, an age threshold of 10 years might not be an independent prognostic marker. Multicenter analyses are needed.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Estudios Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Factores de Riesgo , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
11.
BMC Pediatr ; 24(1): 540, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174946

RESUMEN

BACKGROUND: Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancers in children. Failure of induction chemotherapy is a major factor leading to relapse and death in children with B-ALL. Given the importance of altered metabolites in the carcinogenesis of pediatric B-ALL, studying the metabolic profile of children with B-ALL during induction chemotherapy and in different minimal residual disease (MRD) status may contribute to the management of pediatric B-ALL. METHODS: We collected paired peripheral blood plasma samples from children with B-ALL at pre- and post-induction chemotherapy and analyzed the metabolomic profiling of these samples by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Healthy children were included as controls. We selected metabolites that were depleted in pediatric B-ALL and analyzed the concentrations in pediatric B-ALL samples. In vitro, we study the effects of the selected metabolites on the viability of ALL cell lines and the sensitivity to conventional chemotherapeutic agents in ALL cell lines. RESULTS: Forty-four metabolites were identified with different levels between groups. KEGG pathway enrichment analyses revealed that dysregulated linoleic acid (LA) metabolism and arginine (Arg) biosynthesis were closely associated with pediatric B-ALL. We confirmed that LA and Arg were decreased in pediatric B-ALL samples. The treatment of LA and Arg inhibited the viability of NALM-6 and RS4;11 cells in a dose-dependent manner, respectively. Moreover, Arg increased the sensitivity of B-ALL cells to L-asparaginase and daunorubicin. CONCLUSION: Arginine increases the sensitivity of B-ALL cells to the conventional chemotherapeutic drugs L-asparaginase and daunorubicin. This may represent a promising therapeutic approach.


Asunto(s)
Arginina , Metabolómica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Arginina/metabolismo , Arginina/sangre , Niño , Femenino , Metabolómica/métodos , Preescolar , Masculino , Estudios de Casos y Controles , Neoplasia Residual , Cromatografía Líquida de Alta Presión , Línea Celular Tumoral , Metaboloma , Quimioterapia de Inducción , Adolescente , Lactante
12.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999955

RESUMEN

B-cell lymphoblastic leukemia is a hematologic neoplasm that poses a serious health concern in childhood. Genetic aberrations, such as mutations in the genes IL-7, IL7R, JAK1, JAK2, TLSP, CRLF2, and KTM2A or gene fusions involving BCR::ABL1, ETV6::RUNX1, and PAX5::JAK2, often correlate with the onset of this disease. These aberrations can lead to malfunction of the JAK-STAT signaling pathway, which is implicated in various important biological processes, including those related to immunology. Understanding the mechanisms underlying the malfunction of the JAK-STAT pathway holds potential for research on drugs targeting its components. Available drugs that interfere with the JAK-STAT pathway include fludarabine, ruxolitinib, and fedratinib.


Asunto(s)
Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Humanos , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Quinasas Janus/metabolismo , Niño , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Mutación
13.
Curr Issues Mol Biol ; 45(5): 4035-4049, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37232726

RESUMEN

Patients with pediatric B-cell acute lymphoblastic leukemia (B-ALL) have a high survival rate, yet the prognosis of adults and patients with relapsed/refractory disease is relatively poor. Therefore, it is imperative to develop new therapeutic strategies. Here, we screened 100 plant extracts from South Korean Flora and investigated their anti-leukemic effect using CCRF-SB cells as a B-ALL model. The top cytotoxic extract identified in this screening was the Idesia polycarpa Maxim. branch (IMB), which efficiently inhibited the survival and proliferation of CCRF-SB cells, while having minimal to no impact on normal murine bone marrow cells. Mechanistically, the IMB-induced proapoptotic effect involves the increase of caspase 3/7 activity, which was shown to be associated with the disruption of the mitochondrial membrane potential (MMP) through the reduction in antiapoptotic Bcl-2 family expression. IMB also promoted the differentiation of CCRF-SB cells via the upregulation of the expression of differentiation-related genes, PAX5 and IKZF1. Given that resistance to glucocorticoid (GC) is often found in patients with relapsed/refractory ALL, we investigated whether IMB could restore GC sensitivity. IMB synergized GC to enhance apoptotic rate by increasing GC receptor expression and downmodulating mTOR and MAPK signals in CCRF-SB B-ALL cells. These results suggest that IMB has the potential to be a novel candidate for the treatment of B-ALL.

14.
J Transl Med ; 21(1): 108, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765389

RESUMEN

BACKGROUND: The prognosis of B-cell acute lymphoblastic leukemia (B-ALL) has improved significantly with current first-line therapy, although the recurrence of B-ALL is still a problem. Toll-like receptor 9 (TLR9) agonists have shown good safety and efficiency as immune adjuvants. Apart from their immune regulatory effect, the direct effect of TLR9 agonists on cancer cells with TLR9 expression cannot be ignored. However, the direct effect of TLR9 agonists on B-ALL remains unknown. METHODS: We discussed the relationship between TLR9 expression and the clinical characteristics of B-ALL and explored whether CpG 685 exerts direct apoptotic effect on B-ALL without inhibiting normal B-cell function. By using western blot, co-immunoprecipitation, immunofluorescence co-localization, and chromatin immunoprecipitation, we explored the mechanism of the apoptosis-inducing effect of CpG 685 in treating B-ALL cells. By exploring the mechanism of CpG 685 on B-ALL, the predictive biomarkers of the efficacy of CpG 685 in treating B-ALL were explored. These efficiencies were also confirmed in mouse model as well as clinical samples. RESULTS: High expression of TLR9 in B-ALL patients showed good prognosis. C-MYC-induced BAX activation was the key to the effect of CpG oligodeoxynucleotides against B-ALL. C-MYC overexpression promoted P53 stabilization, enhanced Bcl-2 associated X-protein (BAX) activation, and mediated transcription of the BAX gene. Moreover, combination therapy using CpG 685 and imatinib, a BCR-ABL kinase inhibitor, could reverse resistance to CpG 685 or imatinib alone by promoting BAX activation and overcoming BCR-ABL1-independent PI3K/AKT activation. CONCLUSION: TLR9 is not only a prognostic biomarker but also a potential target for B-ALL therapy. CpG 685 monotherapy might be applicable to Ph- B-ALL patients with C-MYC overexpression and without BAX deletion. CpG 685 may also serve as an effective combinational therapy against Ph+ B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor Toll-Like 9 , Ratones , Animales , Proteína X Asociada a bcl-2/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Fosfatidilinositol 3-Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/uso terapéutico
15.
J Transl Med ; 21(1): 593, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670388

RESUMEN

BACKGROUND: The tumor microenvironment (TME) is a supportive environment responsible for promoting the growth and proliferation of tumor cells. Current studies have revealed that the bone marrow mesenchymal stem cells (BM-MSCs), a type of crucial stromal cells in the TME, can promote the malignant progression of tumors. However, in the adult B-cell acute lymphoblastic leukemia (B-ALL) microenvironment, it is still uncertain what changes in BM-MSCs are induced by leukemia cells. METHODS: In this study, we mimicked the leukemia microenvironment by constructing a BM-MSC-leukemia cell co-culture system. In vitro cell experiments, in vivo mouse model experiments, lentiviral transfection and transcriptome sequencing analysis were used to investigate the possible change of BM-MSCs in the leukemia niche and the potential factors in BM-MSCs that promote the progression of leukemia. RESULTS: In the leukemia niche, the leukemia cells reduced the MSCs' capacity to differentiate towards adipogenic and osteogenic subtypes, which also promoted the senescence and cell cycle arrest of the MSCs. Meanwhile, compared to the mono-cultured MSCs, the gene expression profiles of MSCs in the leukemia niche changed significantly. These differential genes were enriched for cell cycle, cell differentiation, DNA replication, as well as some tumor-promoting biofunctions including protein phosphorylation, cell migration and angiogenesis. Further, interferon alpha-inducible protein 6 (IFI6), as a gene activated by interferon, was highly expressed in leukemia niche MSCs. The leukemia cell multiplication was facilitated evidently by IFI6 both in vitro and in vivo. Mechanistically, IFI6 might promote leukemia cell proliferation by stimulating SDF-1/CXCR4 axis, which leads to the initiation of downstream ERK signaling pathway. As suggested by further RNA sequencing analysis, the high IFI6 level in MSCs somewhat influenced the gene expression profile and biological functions of leukemia cells. CONCLUSIONS: BM-MSCs in the leukemia niche have varying degrees of changes in biological characteristics and gene expression profiles. Overexpression of IFI6 in BM-MSCs could be a key factor in promoting the proliferation of B-ALL cells, and this effect might be exerted through the SDF-1/CXCR4/ERK signal stimulation. Targeting IFI6 or related signaling pathways might be an important measure to reduce the leukemia cell proliferation.


Asunto(s)
Células Madre Mesenquimatosas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Perfilación de la Expresión Génica , Células del Estroma , Transcriptoma , Microambiente Tumoral , Humanos
16.
BMC Cancer ; 23(1): 372, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095455

RESUMEN

BACKGROUND: As an essential regulator of type I interferon (IFN) response, TMEM173 participates in immune regulation and cell death induction. In recent studies, activation of TMEM173 has been regarded as a promising strategy for cancer immunotherapy. However, transcriptomic features of TMEM173 in B-cell acute lymphoblastic leukemia (B-ALL) remain elusive. METHODS: Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were applied to determine the mRNA and protein levels of TMEM173 in peripheral blood mononuclear cells (PBMCs). TMEM173 mutation status was assessed by Sanger sequencing. Single-cell RNA sequencing (scRNA-seq) analysis was performed to explore the expression of TMEM173 in different types of bone marrow (BM) cells. RESULTS: The mRNA and protein levels of TMEM173 were increased in PBMCs from B-ALL patients. Besides, frameshift mutation was presented in TMEM173 sequences of 2 B-ALL patients. ScRNA-seq analysis identified the specific transcriptome profiles of TMEM173 in the BM of high-risk B-ALL patients. Specifically, expression levels of TMEM173 in granulocytes, progenitor cells, mast cells, and plasmacytoid dendritic cells (pDCs) were higher than that in B cells, T cells, natural killer (NK) cells, and dendritic cells (DCs). Subset analysis further revealed that TMEM173 and pyroptosis effector gasdermin D (GSDMD) restrained in precursor-B (pre-B) cells with proliferative features, which expressed nuclear factor kappa-B (NF-κB), CD19, and Bruton's tyrosine kinase (BTK) during the progression of B-ALL. In addition, TMEM173 was associated with the functional activation of NK cells and DCs in B-ALL. CONCLUSIONS: Our findings provide insights into the transcriptomic features of TMEM173 in the BM of high-risk B-ALL patients. Targeted activation of TMEM173 in specific cells might provide new therapeutic strategies for B-ALL patients.


Asunto(s)
Leucocitos Mononucleares , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Análisis de Expresión Génica de una Sola Célula , Células Asesinas Naturales , FN-kappa B/genética , ARN Mensajero/genética , Transcriptoma , Análisis de la Célula Individual
17.
J Pathol ; 258(1): 12-25, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35522562

RESUMEN

The testis is the second most frequent extramedullary site of relapse in pediatric acute lymphoblastic leukemia (ALL). The mechanism for B-cell (B) ALL cell migration towards and survival within the testis remains elusive. Here, we identified CXCL12-CXCR4 as the leading signaling axis for B-ALL cell migration and survival in the testicular leukemic niche. We combined analysis of primary human ALL with a novel patient-derived xenograft (PDX)-ALL mouse model with testicular involvement. Prerequisites for leukemic cell infiltration in the testis were prepubertal age of the recipient mice, high surface expression of CXCR4 on PDX-ALL cells, and CXCL12 secretion from the testicular stroma. Analysis of primary pediatric patient samples revealed that CXCR4 was the only chemokine receptor being robustly expressed on B-ALL cells both at the time of diagnosis and relapse. In affected patient testes, leukemic cells localized within the interstitial space in close proximity to testicular macrophages. Mouse macrophages isolated from affected testes, in the PDX model, revealed a macrophage polarization towards a M2-like phenotype in the presence of ALL cells. Therapeutically, blockade of CXCR4-mediated functions using an anti-CXCR4 antibody treatment completely abolished testicular infiltration of PDX-ALL cells and strongly impaired the overall development of leukemia. Collectively, we identified a prepubertal condition together with high CXCR4 expression as factors affecting the leukemia permissive testicular microenvironment. We propose CXCR4 as a promising target for therapeutic prevention of testicular relapses in childhood B-ALL. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Testículo , Animales , Movimiento Celular , Quimiocina CXCL12/metabolismo , Niño , Humanos , Masculino , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores CXCR4/metabolismo , Recurrencia , Transducción de Señal , Testículo/química , Testículo/metabolismo , Testículo/patología , Microambiente Tumoral
18.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003662

RESUMEN

Menin/MEN1 is a scaffold protein that participates in proliferation, regulation of gene transcription, DNA damage repair, and signal transduction. In hematological malignancies harboring the KMT2A/MLL1 (MLLr) chromosomal rearrangements, the interaction of the oncogenic fusion protein MLLr with MEN1 has been shown to be essential. MEN1 binders inhibiting the MEN1 and KMT2A interaction have been shown to be effective against MLLr AML and B-ALL in experimental models and clinical studies. We hypothesized that in addition to the MEN1-KMT2A interaction, alternative mechanisms might be instrumental in the MEN1 dependency of leukemia. We first mined and analyzed data from publicly available gene expression databases, finding that the dependency of B-ALL cell lines on MEN1 did not correlate with the presence of MLLr. Using shRNA-mediated knockdown, we found that all tested B-ALL cell lines were sensitive to MEN1 depletion, independent of the underlying driver mutations. Most multiple myeloma cell lines that did not harbor MLLr were also sensitive to the genetic depletion of MEN1. We conclude that the oncogenic role of MEN1 is not limited to the interaction with KMT2A. Our results suggest that targeted degradation of MEN1 or the development of binders that induce global changes in the MEN1 protein structure may be more efficient than the inhibition of individual MEN1 protein interactions.


Asunto(s)
Mieloma Múltiple , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Línea Celular Tumoral , Leucemia/metabolismo , Mieloma Múltiple/genética , Factores de Transcripción/genética
19.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240110

RESUMEN

Recent years have brought significant progress in the treatment of B-cell acute lymphoblastic leukemia (ALL). This was influenced by both the improved schemes of conventionally used therapy, as well as the development of new forms of treatment. As a consequence, 5-year survival rates have increased and now exceed 90% in pediatric patients. For this reason, it would seem that everything has already been explored in the context of ALL. However, delving into its pathogenesis at the molecular level shows that there are many variations that still need to be analyzed in more detail. One of them is aneuploidy, which is among the most common genetic changes in B-cell ALL. It includes both hyperdiploidy and hypodiploidy. Knowledge of the genetic background is important already at the time of diagnosis, because the first of these forms of aneuploidy is characterized by a good prognosis, in contrast to the second, which is in favor of an unfavorable course. In our work, we will focus on summarizing the current state of knowledge on aneuploidy, along with an indication of all the consequences that may be correlated with it in the context of the treatment of patients with B-cell ALL.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Aneuploidia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
20.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762241

RESUMEN

It is theorized that dysregulated immune responses to infectious insults contribute to the development of pediatric B-ALL. In this context, our understanding of the immunomodulatory-mediator-induced signaling responses of leukemic blasts in pediatric B-ALL diagnostic samples is rather limited. Hence, in this study, we defined the signaling landscape of leukemic blasts, as well as normal mature B cells and T cells residing in diagnostic samples from 63 pediatric B-ALL patients. These samples were interrogated with a range of immunomodulatory-mediators within 24 h of collection, and phosflow analyses of downstream proximal signaling nodes were performed. Our data reveal evidence of basal hyperphosphorylation across a broad swath of these signaling nodes in leukemic blasts in contrast to normal mature B cells and T cells in the same sample. We also detected similarities in the phosphoprotein signature between blasts and mature B cells in response to IFNγ and IL-2 treatment, but significant divergence in the phosphoprotein signature was observed between blasts and mature B cells in response to IL-4, IL-7, IL-10, IL-21 and CD40 ligand treatment. Our results demonstrate the existence of both symmetry and asymmetry in the phosphoprotein signature between leukemic and non-leukemic cells in pediatric B-ALL diagnostic samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA