RESUMEN
Selective calcium chelator 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) is a common tool to investigate calcium signaling. However, BAPTA expresses various effects on intracellular calcium signaling, which are not related to its ability to bind Ca2+. In patch clamp experiments, we investigated calcium chelation independent effects of BAPTA on endogenous calcium-activated chloride channels ANO6 (TMEM16F) in HEK293T cells. We have found that application of BAPTA to intracellular solution led to two distinct effects on channels properties. On the one hand, application of BAPTA acutely reduced amplitude of endogenous ANO6 channels induced by 10 µM Ca2+ in single channel recordings. On the other hand, BAPTA application by itself induced ANO6 channel activity in the absence of the intracellular calcium elevation. Open channel probability was enhanced by increasing the intracellular BAPTA concentration from 0.1 to 1 and 10 mM. Another calcium chelator EGTA did not demonstrate chelation independent effects on the ANO6 activity in the same conditions. Due to off-target effects BAPTA should be used with caution when studying calcium-activated ANO6 channels.
Asunto(s)
Canales de Calcio , Calcio , Humanos , Ácido Egtácico/farmacología , Calcio/metabolismo , Células HEK293 , Quelantes del Calcio/farmacologíaRESUMEN
Senescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis.
Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias del Cuello Uterino , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismoRESUMEN
Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.
Asunto(s)
Adenosina Trifosfato/farmacología , Encéfalo/irrigación sanguínea , Señalización del Calcio/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Pericitos/efectos de los fármacos , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y/efectos de los fármacos , Animales , Capilares/citología , Bovinos , Células Cultivadas , Inositol 1,4,5-Trifosfato/metabolismo , Pericitos/metabolismo , Fenotipo , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y1/efectos de los fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/efectos de los fármacos , Receptores Purinérgicos P2Y2/metabolismoRESUMEN
Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN-2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST-1). Cytosolic Ca2+ concentrations [Ca2+ ]i was measured by the Ca2+ -sensitive fluorescent dye fura-2. In HCN-2 cells, hypaconitine (10-50 µmol/L) induced cytotoxicity and [Ca2+ ]i rises in a concentration-dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+ ]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced hypaconitine's cytotoxicity. In Ca2+ -containing medium, hypaconitine-induced Ca2+ entry was inhibited by modulators (2-APB and SKF96365) of store-operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+ -free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine-induced [Ca2+ ]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin-induced [Ca2+ ]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine-induced [Ca2+ ]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+ ]i rises by Ca2+ influx via store-operated Ca2+ entry involved PKC regulation and evoking PLC-independent Ca2+ release from the endoplasmic reticulum. Because BAPTA-AM loading only partially reversed hypaconitine-induced cell death, it suggests that hypaconitine induced a second Ca2+ -independent cytotoxicity in HCN-2 cells.
Asunto(s)
Aconitina/análogos & derivados , Ácido Egtácico/análogos & derivados , Señalización del Calcio , Alcaloides DiterpénicosRESUMEN
The ability of P2X7 receptors to potentiate rhythmically evoked acetylcholine (ACh) release through Ca2+ entry via P2X7 receptors and via L-type voltage-dependent Ca2+ channels (VDCCs) was compared by loading Ca2+ chelators into motor nerve terminals. Neuromuscular preparations of the diaphragms of wild-type (WT) mice and pannexin-1 knockout (Panx1-/-) mice, in which ACh release is potentiated by the disinhibition of the L-type VDCCs upon the activation of P2X7 receptors, were used. Miniature end-plate potentials (MEPPs) and evoked end-plate potentials (EPPs) were recorded when the motor terminals were loaded with slow or fast Ca2+ chelators (EGTA-AM or BAPTA-AM, respectively, 50 µM). In WT and Panx1-/- mice, EGTA-AM did not change either spontaneous or evoked ACh release, while BAPTA-AM inhibited synaptic transmission by suppressing the quantal content of EPPs throughout the course of the short rhythmic train (50 Hz, 1 s). In the motor synapses of either WT or Panx1-/- mice in the presence of BAPTA-AM, the activation of P2X7 receptors by BzATP (30 µM) returned the EPP quantal content to the control level. In the neuromuscular junctions (NMJs) of Panx1-/- mice, EGTA-AM completely prevented the BzATP-induced increase in EPP quantal content. After Panx1-/- NMJs were treated with BAPTA-AM, BzATP lost its ability to enhance the EPP quantal content to above the control level. Nitrendipine (1 µM), an inhibitor of L-type VDCCs, was unable to prevent this BzATP-induced enhancement of EPP quantal content to the control level. We propose that the activation of P2X7 receptors may provide additional Ca2+ entry into motor nerve terminals, which, independent of the modulation of L-type VDCC activity, can partially reduce the buffering capacity of Ca2+ chelators, thereby providing sufficient Ca2+ signals for ACh secretion at the control level. However, the activity of both Ca2+ chelators was sufficient to eliminate Ca2+ entry via L-type VDCCs activated by P2X7 receptors and increase the EPP quantal content in the NMJs of Panx1-/- mice to above the control level.
Asunto(s)
Quelantes del Calcio/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Receptores Purinérgicos P2X7/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Acetilcolina/farmacología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L/metabolismo , Quelantes , Conexinas/genética , Ácido Egtácico/análogos & derivados , Ácido Egtácico/antagonistas & inhibidores , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Transmisión SinápticaRESUMEN
PURPOSE: The 26S proteasome plays important roles in many intracellular processes and is therefore a critical intracellular cellular target for anticancer treatments. The primary aim of the current study was to identify critical proteins that may play roles in opposing the antisurvival effect of the proteasome inhibitor bortezomib together with the calcium-chelator BAPTA-AM in cancer cells using label-free LC-MS/MS. In addition, based on the results of the proteomic technique, a novel and more effective inhibitor combination involving bortezomib as well as OTSSP167 was developed for breast cancer cells. METHODS AND RESULTS: Using label-free LC-MS/MS, it was found that expressions of 1266 proteins were significantly changed between the experimental groups. Among these proteins were cell division cycle 5-like (Cdc5L) and drebrin-like (DBNL). We then hypothesized that inhibition of the activities of these two proteins may lead to more effective anticancer inhibitor combinations in the presence of proteasomal inhibition. In fact, as presented in the current study, Cdc5L phosphorylation inhibitor CVT-313 and DBNL phosphorylation inhibitor OTSSP167 were highly cytotoxic in 4T1 breast cancer cells and their IC50 values were 20.1 and 43 nM, respectively. Under the same experimental conditions, the IC50 value of BAPTA-AM was found 19.9 µM. Using WST 1 cytotoxicity assay, it was determined that 10 nM bortezomib + 10 nM CVT-313 was more effective than the control, the single treatments, or than 5 nM bortezomib + 5 nM CVT-313. Similarly, 10 nM bortezomib + 10 nM OTSSP167 was more cytotoxic than the control, the monotherapies, 5 nM bortezomib + 5 nM OTSSP167, or than 5 nM bortezomib + 10 nM OTSSP167, indicating that bortezomib + OTSSP167 was also more effective than bortezomib + CVT-313 in a dose-dependent manner. Furthermore, the 3D spheroid model proved that bortezomib + OTSSP167 was more effective than the monotherapies as well as bortezomib + CVT-313 and bortezomib + BAPTA-AM combinations. Finally, the effect of bortezomib + OTSSP167 combination was tested on MDA-MB-231 breast cancer cells, and it similarly determined that 20 nM bortezomib +40 nM OTSSP167 combination completely blocked the formation of 3D spheroids. CONCLUSIONS: Altogether, the results presented here indicate that bortezomib + OTSSP167 is a novel and effective combination and may be tested further for cancer treatment in vivo and in clinical settings.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bortezomib/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteómica , Coloración y Etiquetado , Bortezomib/farmacología , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Naftiridinas , Fosforilación/efectos de los fármacos , Purinas/farmacología , Purinas/uso terapéutico , Proteínas de Unión al ARN/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patologíaRESUMEN
The structural details of chromosomes have been of interest to researchers for many years, but how the metaphase chromosome is constructed remains unsolved. Divalent cations have been suggested to be required for the organization of chromosomes. However, detailed information about the role of these cations in chromosome organization is still limited. In the current study, we investigated the effects of Ca2+ and Mg2+ depletion and the reversibility upon re-addition of one of the two ions. Human chromosomes were treated with different concentrations of Ca2+and Mg2+. Depletion of Ca2+ and both Ca2+ and Mg2+ were carried out using 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and ethylenediaminetetraacetic acid (EDTA), respectively. Chromosome structure was examined by fluorescence microscopy and scanning electron microscopy. The results indicated that chromosome structures after treatment with a buffer without Mg2+, after Ca2+ depletion, as well as after depletion of both Mg2+, and Ca2+, yielded fewer compact structures with fibrous chromatin than those without cation depletion. Interestingly, the chromatin of EDTA-treated chromosomes reversed to their original granular diameters after re-addition of either Mg2+ or Ca2+ only. These findings signify the importance of divalent cations on the chromosome structure and suggest the interchangeable role of Ca2+ and Mg2+.
Asunto(s)
Cationes Bivalentes/química , Cromosomas/química , Animales , Calcio , Cromatina/química , Ácido Edético , Humanos , Iones , Magnesio , Metafase , Microscopía Electrónica de Rastreo , Microscopía FluorescenteRESUMEN
Malathion, one of commonly used organophosphate insecticides, has a wide range of toxic actions in different models. However, the effect of this compound on Ca2+ homeostasis and its related cytotoxicity in glial cells is elusive. This study examined whether malathion evoked intracellular Ca2+ concentration ([Ca2+]i) rises and established the relationship between Ca2+ signaling and cytotoxicity in normal human astrocytes, rat astrocytes and human glioblastoma cells. The data show that malathion induced concentration-dependent [Ca2+]i rises in Gibco® Human Astrocytes (GHA cells), but not in DI TNC1 normal rat astrocytes and DBTRG-05MG human glioblastoma cells. In GHA cells, this Ca2+ signal response was reduced by removing extracellular Ca2+. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished malathion-induced [Ca2+]i rises. Conversely, incubation with malathion abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 also blocked malathion-induced [Ca2+]i rises. In Ca2+-containing medium, malathion-induced [Ca2+]i rises was inhibited by store-operated Ca2+ channel blockers (2-APB, econazole or SKF96365) and the protein kinase C (PKC) inhibitor GF109203X. Malathion (5-25⯵M) concentration-dependently caused cytotoxicity in GHA, DI TNC1 and DBTRG-05MG cells. This cytotoxic effect was partially prevented by prechelating cytosolic Ca2+ with BAPTA-AM (a selective Ca2+ chelator) only in GHA cells. Together, in GHA but not in DI TNC1 and DBTRG-05MG cells, malathion induced [Ca2+]i rises by inducing PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ channels. Furthermore, malathion induced Ca2+-associated cytotoxicity, suggesting that Ca2+ chelating may have a protective effect on malathion-induced cytotoxicity in normal human astrocytes.
Asunto(s)
Calcio/metabolismo , Malatión/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quelantes , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , RatasRESUMEN
Free calcium ion concentration is known to govern numerous biological processes and indeed calcium acts as an important biological secondary messenger for muscle contraction, neurotransmitter release, ion-channel gating, and exocytosis. As such, the development of molecules with the ability to instantaneously increase or diminish free calcium concentrations potentially allows greater control over certain biological functions. In order to permit remote regulation of Ca2+, a selective BAPTA-type synthetic receptor / host was integrated with a photoswitchable azobenzene motif, which upon photoirradiation would enhance (or diminish) the capacity to bind calcium upon acting on the conformation of the adjacent binding site, rendering it a stronger or weaker binder. Photoswitching was studied in pseudo-physiological conditions (pH 7.2, [KCl] = 100 mM) and dissociation constants for azobenzene cis- and trans-isomers have been determined (0.230 µM and 0.102 µM, respectively). Reversible photoliberation/uptake leading to a variation of free calcium concentration in solution was detected using a fluorescent Ca2+ chemosensor.
RESUMEN
Human triple-negative breast cancer (TNBC) is poorly diagnosed and unresponsive to conventional hormone therapy. Chetomin (CHET), a fungal metabolite synthesized by Chaetomium cochliodes, has been reported as a promising anticancer and antiangiogenic agent but the complete molecular mechanism of its anticancer potential remains to be elucidated. In our study, we explored the anti-neoplastic action of CHET on TNBC cells. Cytotoxicity studies were performed in human TNBC cells viz. MDA-MB-231 and MDA-MB-468 cells by Sulforhodamine B assay. It exhibited antiproliferative response and induced apoptosis in both the cell types. Cell cycle analysis revealed that it increases the sub G0/G1 phase cell population. Modulation of mitochondrial membrane potential, activation of caspase 3/7 and a remarkable increase in the expression of cleaved PARP and increased chromatin condensation was observed after CHET treatment in MDA-MB-231 and MDA-MB-468 cells. Additionally, an elevated level of intracellular Ca2+ played an important role in CHET mediated cell death response. Calcium overload in mitochondria led to release of cytochrome c which in turn triggered caspase-3 mediated cell death. Inhibition of calcium signalling using BAPTA-AM reduced apoptosis confirming the involvement of calcium signalling in CHET induced cell death. Chetomin also inhibited PI3K/mTOR cell survival pathway in human TNBC cells. The overall findings suggest that Chetomin inhibited the growth of human TNBC cells by caspase-dependent apoptosis and modulation of PI3K/mTOR signalling and could be used as a novel chemotherapeutic agent for the treatment of human TNBC in future.
Asunto(s)
Apoptosis/efectos de los fármacos , Calcio/metabolismo , Disulfuros/administración & dosificación , Alcaloides Indólicos/administración & dosificación , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Hydrogen sulfide (H2S) is an endogenous gasotransmitter in human physiology and inflammatory disease, however, with limited knowledge of how signal transduction pathways are involved in immune cells. To examine the effects of sulfide on relevant intracellular signaling in human peripheral blood mononuclear cells (PBMCs), we stimulated healthy donor PBMCs with sodium hydrosulfide (NaHS, 1-1000µM) to mimic H2S stimulation, and analyzed phosphorylation of p38 mitogen activated protein kinase (MAPK) (pT180/pY182), NF-κB p65 (pS529), Akt (pS473) and CREB/ATF1 (pS133/pS63) with flow and mass cytometry. In contrast to transient effects in subsets of lymphocytes, classical monocytes demonstrated sustained phosphorylation of p38, Akt and CREB/ATF1. NaHS induced calcium dependent phosphorylation of p38, Akt and CREB, but not NF-κB, and the phosphorylation of Akt was partly dependent on p38, indicative of p38-Akt crosstalk. Attenuation of these effects by molecules targeting p38 and Hsp90 indicated Hsp90 as a possible target for H2S-induced activation of p38. These results provide a description of a NaHS-induced signal transduction pathway in human primary immune cells that may have relevance for the role of sulfides in inflammation.
Asunto(s)
Sulfuro de Hidrógeno/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfuros/farmacología , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Inflamación/metabolismo , Células Jurkat , Leucocitos Mononucleares/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Ilexgenin A is a natural triterpenoid with beneficial effects on lipid disorders. This study aimed to investigate the effects of ilexgenin A on endothelial homeostasis and its mechanisms. Palmitate (PA) stimulation induced endoplasmic reticulum stress (ER stress) and subsequent thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation in endothelial cells, leading to endothelial dysfunction. Ilexgenin A enhanced LKB1-dependent AMPK activity and improved ER stress by suppression of ROS-associated TXNIP induction. However, these effects were blocked by knockdown of AMPKα, indicating AMPK is essential for its action in suppression of ER stress. Meanwhile, ilexgenin A inhibited NLRP3 inflammasome activation by down-regulation of NLRP3 and cleaved caspase-1 induction, and thereby reduced IL-1ß secretion. It also inhibited inflammation and apoptosis exposed to PA insult. Consistent with these results in endothelial cells, ilexgenin A attenuated ER stress and restored the loss of eNOS activity in vascular endothelium, and thereby improved endothelium-dependent vasodilation in rat aorta. A further analysis in high-fat fed mice showed that oral administration of ilexgenin A blocked ER stress/NLRP3 activation with reduced ROS generation and increased NO production in vascular endothelium, well confirming the beneficial effect of ilexgenin A on endothelial homeostasis in vivo. Taken together, these results show ER stress-associated TXNIP/NLRP3 inflammasome activation was responsible for endothelial dysfunction and ilexgenin A ameliorated endothelial dysfunction by suppressing ER-stress and TXNIP/NLRP3 inflammasome activation with a regulation of AMPK. This finding suggests that the application of ilexgenin A is useful in the management of cardiovascular diseases in obesity.
Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Triterpenos/farmacología , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Apoptosis/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 3/metabolismo , Línea Celular , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales/citología , Técnicas de Silenciamiento del Gen , Humanos , Ilex , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismoRESUMEN
Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 µM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation-oxidation-cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.
RESUMEN
Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aß42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aß42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Membranas Mitocondriales/metabolismo , Polifenoles/farmacología , Línea Celular Tumoral , Humanos , Membranas Mitocondriales/efectos de los fármacos , Permeabilidad , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismoRESUMEN
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10µM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5µM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Músculo Liso/metabolismo , Sistema Respiratorio/patología , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inflamación/patología , Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
The Fas antigen, also designated as APO-1 or CD95, is a member of the tumor necrosis factor receptor superfamily and can mediate apoptotic cell death in various cells. We report here that blood coagulation factor XIII (plasma transglutaminase, fibrin stabilizing factor) inhibits apoptosis induced by a cytotoxic anti-Fas monoclonal antibody in Jurkat cells. When cells were treated with the antibody in fetal calf serum-containing media, higher-molecular-weight (180K) polypeptides containing Fas molecule were detected by immunoblotting. Under conditions where the transglutaminase activity was eliminated or suppressed, the cross-link of Fas was not observed, and concurrently cell death was hastened. Moreover, an antibody against factor XIII strongly accelerated the Fas-mediated apoptosis. Furthermore, addition of partially purified factor XIII neutralized the apoptosis-promoting effect of anti-factor XIII antibody, indicating that this enzyme is involved in cross-link of Fas and down-regulates Fas-mediated apoptotic cell death. Significantly, the cross-link of Fas was seen only in fetal calf serum but not in newly-born calf serum, 1-year-old calf serum or adult bovine serum. These data suggest that plasma transglutaminase factor XIII may play a key role in fetal development of vertebrates via cross-link of Fas antigen.
Asunto(s)
Apoptosis , Factor XIIIa/metabolismo , Feto/metabolismo , Receptor fas/metabolismo , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales de Origen Murino , Catálisis , Regulación hacia Abajo , Desarrollo Fetal , Humanos , Células Jurkat , Receptor fas/antagonistas & inhibidoresRESUMEN
Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whether Wnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5a triggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production. Wnt-5a activates the non-canonical Wnt/Ca(2+) signaling through a mechanism that depends on Ca(2+) release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.
Asunto(s)
Neuronas/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Wnt/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/citología , Hipocampo/embriología , Humanos , Células L , Proteínas de la Membrana/farmacología , Ratones , Modelos Biológicos , Neuronas/citología , Neuronas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/farmacología , Proteína Wnt-5aRESUMEN
Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 µM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 µM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.
Asunto(s)
Calcio/metabolismo , Fura-2/química , Estilbenos/química , Línea Celular Tumoral , Humanos , Resveratrol , Espectrometría de FluorescenciaRESUMEN
Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2bis(2aminophenoxy)ethaneN,N,N',N'tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTAAM), a cellpermeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models in vitro, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and in vivo, intraductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTAAMloaded LN (BLN) effectively and rapidly eliminated excessive Ca2+ and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNFα, IL6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca2+ overload in patients with AP.
Asunto(s)
Ácido Egtácico/análogos & derivados , Pancreatitis , Humanos , Ratas , Animales , Pancreatitis/metabolismo , Liposomas/metabolismo , Calcio/metabolismo , Enfermedad Aguda , Células Acinares/patología , Necrosis/metabolismoRESUMEN
Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (â¼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.