Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.227
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(7): 1547-1565.e15, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32492405

RESUMEN

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Potenciales de Acción/fisiología , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Femenino , Células HEK293 , Homeostasis/fisiología , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Antígeno Ventral Neuro-Oncológico , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
2.
Mol Cell ; 83(24): 4555-4569.e4, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38035882

RESUMEN

Modulation of large conductance intracellular ligand-activated potassium (BK) channel family (Slo1-3) by auxiliary subunits allows diverse physiological functions in excitable and non-excitable cells. Cryoelectron microscopy (cryo-EM) structures of voltage-gated potassium (Kv) channel complexes have provided insights into how voltage sensitivity is modulated by auxiliary subunits. However, the modulation mechanisms of BK channels, particularly as ligand-activated ion channels, remain unknown. Slo1 is a Ca2+-activated and voltage-gated BK channel and is expressed in neurons, muscle cells, and epithelial cells. Using cryo-EM and electrophysiology, we show that the LRRC26-γ1 subunit modulates not only voltage but also Ca2+ sensitivity of Homo sapiens Slo1. LRRC26 stabilizes the active conformation of voltage-senor domains of Slo1 by an extracellularly S4-locking mechanism. Furthermore, it also stabilizes the active conformation of Ca2+-sensor domains of Slo1 intracellularly, which is functionally equivalent to intracellular Ca2+ in the activation of Slo1. Such a dual allosteric modulatory mechanism may be general in regulating the intracellular ligand-activated BK channel complexes.


Asunto(s)
Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Humanos , Calcio/metabolismo , Microscopía por Crioelectrón , Activación del Canal Iónico/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ligandos , Potasio , Regulación Alostérica
3.
Immunity ; 50(3): 668-676.e5, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824324

RESUMEN

Human polyomaviruses cause a common childhood infection worldwide and typically elicit a neutralizing antibody and cellular immune response, while establishing a dormant infection in the kidney with minimal clinical manifestations. However, viral reactivation can cause severe pathology in immunocompromised individuals. We developed a high-throughput, functional antibody screen to examine the humoral response to BK polyomavirus. This approach enabled the isolation of antibodies from all peripheral B cell subsets and revealed the anti-BK virus antibody repertoire as clonally complex with respect to immunoglobulin sequences and isotypes (both IgM and IgG), including a high frequency of monoclonal antibodies that broadly neutralize BK virus subtypes and the related JC polyomavirus. Cryo-electron microscopy of a broadly neutralizing IgG single-chain variable fragment complexed with BK virus-like particles revealed the quaternary nature of a conserved viral epitope at the junction between capsid pentamers. These features unravel a potent modality for inhibiting polyomavirus infection in kidney transplant recipients and other immunocompromised patients.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Virus BK/inmunología , Memoria Inmunológica/inmunología , Virus JC/inmunología , Infecciones por Polyomavirus/inmunología , Poliomavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Cápside/inmunología , Línea Celular , Epítopos/inmunología , Células HEK293 , Humanos , Inmunidad Celular/inmunología , Riñón/inmunología
4.
Proc Natl Acad Sci U S A ; 121(28): e2403763121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968111

RESUMEN

Advancing the mechanistic understanding of absence epilepsy is crucial for developing new therapeutics, especially for patients unresponsive to current treatments. Utilizing a recently developed mouse model of absence epilepsy carrying the BK gain-of-function channelopathy D434G, here we report that attenuating the burst firing of midline thalamus (MLT) neurons effectively prevents absence seizures. We found that enhanced BK channel activity in the BK-D434G MLT neurons promotes synchronized bursting during the ictal phase of absence seizures. Modulating MLT neurons through pharmacological reagents, optogenetic stimulation, or deep brain stimulation effectively attenuates burst firing, leading to reduced absence seizure frequency and increased vigilance. Additionally, enhancing vigilance by amphetamine, a stimulant medication, or physical perturbation also effectively suppresses MLT bursting and prevents absence seizures. These findings suggest that the MLT is a promising target for clinical interventions. Our diverse approaches offer valuable insights for developing next generation therapeutics to treat absence epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia , Animales , Epilepsia Tipo Ausencia/fisiopatología , Ratones , Tálamo/fisiopatología , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Estimulación Encefálica Profunda/métodos , Masculino , Núcleos Talámicos de la Línea Media/fisiología
5.
Circ Res ; 134(7): 858-871, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38362769

RESUMEN

BACKGROUND: Vascular large conductance Ca2+-activated K+ (BK) channel, composed of the α-subunit (BK-α) and the ß1-subunit (BK-ß1), is a key determinant of coronary vasorelaxation and its function is impaired in diabetic vessels. However, our knowledge of diabetic BK channel dysregulation is incomplete. The Sorbs2 (Sorbin homology [SoHo] and Src homology 3 [SH3] domains-containing protein 2), is ubiquitously expressed in arteries, but its role in vascular pathophysiology is unknown. METHODS: The role of Sorbs2 in regulating vascular BK channel activity was determined using patch-clamp recordings, molecular biological techniques, and in silico analysis. RESULTS: Sorbs2 is not only a cytoskeletal protein but also an RNA-binding protein that binds to BK channel proteins and BK-α mRNA, regulating BK channel expression and function in coronary smooth muscle cells. Molecular biological studies reveal that the SH3 domain of Sorbs2 is necessary for Sorbs2 interaction with BK-α subunits, while both the SH3 and SoHo domains of Sorbs2 interact with BK-ß1 subunits. Deletion of the SH3 or SoHo domains abolishes the Sorbs2 effect on the BK-α/BK-ß1 channel current density. Additionally, Sorbs2 is a target gene of the Nrf2 (nuclear factor erythroid-2-related factor 2), which binds to the promoter of Sorbs2 and regulates Sorbs2 expression in coronary smooth muscle cells. In vivo studies demonstrate that Sorbs2 knockout mice at 4 months of age display a significant decrease in BK channel expression and function, accompanied by impaired BK channel Ca2+-sensitivity and BK channel-mediated vasodilation in coronary arteries, without altering their body weights and blood glucose levels. Importantly, Sorbs2 expression is significantly downregulated in the coronary arteries of db/db type 2 diabetic mice. CONCLUSIONS: Sorbs2, a downstream target of Nrf2, plays an important role in regulating BK channel expression and function in vascular smooth muscle cells. Vascular Sorbs2 is downregulated in diabetes. Genetic knockout of Sorbs2 manifests coronary BK channelopathy and vasculopathy observed in diabetic mice, independent of obesity and glucotoxicity.


Asunto(s)
Canalopatías , Diabetes Mellitus Experimental , Ratones , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Canalopatías/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasos Coronarios/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(2): e2208963120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595706

RESUMEN

Layer 5 (L5) pyramidal neurons receive predictive and sensory inputs in a compartmentalized manner at their apical and basal dendrites, respectively. To uncover how integration of sensory inputs is affected in autism spectrum disorders (ASD), we used two-photon glutamate uncaging to activate spines in the basal dendrites of L5 pyramidal neurons from a mouse model of Fragile X syndrome (FXS), the most common genetic cause of ASD. While subthreshold excitatory inputs integrate linearly in wild-type animals, surprisingly those with FXS summate sublinearly, contradicting what would be expected of sensory hypersensitivity classically associated with ASD. We next investigated the mechanism underlying this sublinearity by performing knockdown of the regulatory ß4 subunit of BK channels, which rescued the synaptic integration, a result that was corroborated with numerical simulations. Taken together, these findings suggest that there is a differential impairment in the integration of feedforward sensory and feedback predictive inputs in L5 pyramidal neurons in FXS and potentially other forms of ASD, as a result of specifically localized subcellular channelopathies. These results challenge the traditional view that FXS and other ASD are characterized by sensory hypersensitivity, proposing instead a hyposensitivity of sensory inputs and hypersensitivity of predictive inputs onto cortical neurons.


Asunto(s)
Síndrome del Cromosoma X Frágil , Ratones , Animales , Canales de Potasio de Gran Conductancia Activados por el Calcio , Células Piramidales/fisiología , Dendritas/fisiología , Neuronas
7.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050120

RESUMEN

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.


Asunto(s)
Etanol , Núcleos Septales , Humanos , Ratones , Animales , Femenino , Etanol/farmacología , Corteza Insular , Núcleos Septales/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/fisiología
8.
Stem Cells ; 42(2): 146-157, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37952119

RESUMEN

The expression of large conductance calcium-activated potassium channels (BK channels) in adipose tissue has been identified for years. BK channel deletion can improve metabolism in vivo, but the relative mechanisms remain unclear. Here, we examined the effects of BK channels on the differentiation of adipose-derived stem cells (ADSCs) and the related mechanisms. BKα and ß1 subunits were expressed on adipocytes. We found that both deletion of the KCNMA1 gene, encoding the pore forming α subunit of BK channels, and the BK channel inhibitor paxilline increased the expression of key genes in the peroxisome proliferator activated receptor (PPAR) pathway and promoted adipogenetic differentiation of ADSCs. We also observed that the MAPK-ERK pathway participates in BK channel deficiency-promoted adipogenic differentiation of ADSCs and that ERK inhibitors blocked the differentiation-promoting effect of BK channel deficiency. Hyperplasia of adipocytes is considered beneficial for metabolic health. These results indicate that BK channels play an important role in adipose hyperplasia by regulating the differentiation of ADSCs and may become an important target for studying the pathogenesis and treatment strategies of metabolic disorder-related diseases.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Sistema de Señalización de MAP Quinasas , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Hiperplasia , Diferenciación Celular , Adipocitos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(25): e2204620119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704760

RESUMEN

In neurosecretion, allosteric communication between voltage sensors and Ca2+ binding in BK channels is crucially involved in damping excitatory stimuli. Nevertheless, the voltage-sensing mechanism of BK channels is still under debate. Here, based on gating current measurements, we demonstrate that two arginines in the transmembrane segment S4 (R210 and R213) function as the BK gating charges. Significantly, the energy landscape of the gating particles is electrostatically tuned by a network of salt bridges contained in the voltage sensor domain (VSD). Molecular dynamics simulations and proton transport experiments in the hyperpolarization-activated R210H mutant suggest that the electric field drops off within a narrow septum whose boundaries are defined by the gating charges. Unlike Kv channels, the charge movement in BK appears to be limited to a small displacement of the guanidinium moieties of R210 and R213, without significant movement of the S4.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Gran Conductancia Activados por el Calcio , Arginina/metabolismo , Activación del Canal Iónico/genética , Simulación de Dinámica Molecular , Mutación
10.
Proc Natl Acad Sci U S A ; 119(12): e2200140119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286197

RESUMEN

A growing number of gain-of-function (GOF) BK channelopathies have been identified in patients with epilepsy and movement disorders. Nevertheless, the underlying pathophysiology and corresponding therapeutics remain obscure. Here, we utilized a knock-in mouse model carrying human BK-D434G channelopathy to investigate the neuronal mechanism of BK GOF in the pathogenesis of epilepsy and dyskinesia. The BK-D434G mice manifest the clinical features of absence epilepsy and exhibit severe motor deficits and dyskinesia-like behaviors. The cortical pyramidal neurons and cerebellar Purkinje cells from the BK-D434G mice show hyperexcitability, which likely contributes to the pathogenesis of absence seizures and paroxysmal dyskinesia. A BK channel blocker, paxilline, potently suppresses BK-D434G­induced hyperexcitability and effectively mitigates absence seizures and locomotor deficits in mice. Our study thus uncovered a neuronal mechanism of BK GOF in absence epilepsy and dyskinesia. Our findings also suggest that BK inhibition is a promising therapeutic strategy for mitigating BK GOF-induced neurological disorders.


Asunto(s)
Canalopatías , Discinesias , Epilepsia Tipo Ausencia , Canales de Potasio de Gran Conductancia Activados por el Calcio , Animales , Discinesias/genética , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Ratones , Neuronas , Convulsiones
11.
J Infect Dis ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428993

RESUMEN

BACKGROUND: Polyomavirus nephropathy (PyVN) leads to kidney transplant dysfunction and loss. Since a definitive diagnosis requires an invasive kidney biopsy, a timely diagnosis is often hampered. In this clinical dilemma the PyV-haufen-test, centering around the detection of three-dimensional PyV aggregates in the urine, might provide crucial diagnostic information. METHODS: A multistep experimental design. Hypothesis: PyV-haufen form within the kidneys under high concentrations of uromodulin, a kidney specific protein; PyV-haufen are kidney-specific-disease-markers. RESULTS: Investigative step A showed colocalization of uromodulin with aggregated PyV (i) in ten kidneys with PyVN by immunohistochemistry, (ii) in urine samples containing PyV-haufen by electron microscopy/immunogold labeling (n = 3), and (iii) in urine samples containing PyV-haufen by immunoprecipitation assays (n = 4). Investigative step B: In in-vitro experiments only high uromodulin concentrations of ≥ 1.25 mg/mL aggregated PyV, as is expected to occur within injured nephrons. In contrast, in voided urine samples (n = 59) uromodulin concentrations were below aggregation concentrations (1.2 -19.6 µg/mL). Investigative step C: 0/11 (0%) uromodulin KO-/- mice with histologic signs of PyVN showed urinary PyV-haufen shedding compared to 10/14 (71%) WT+/+ mice. CONCLUSION: PyV-haufen form within kidneys under high uromodulin concentrations. Thus, PyV-haufen detected in the urine are specific biomarkers for intra-renal disease, i.e. definitive PyVN.

12.
J Physiol ; 602(14): 3351-3373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704841

RESUMEN

Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.


Asunto(s)
Potenciales de Acción , Anoctamina-1 , Canales de Potasio de Gran Conductancia Activados por el Calcio , Vasos Linfáticos , Animales , Anoctamina-1/metabolismo , Anoctamina-1/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Ratones , Ratas , Potenciales de Acción/fisiología , Masculino , Vasos Linfáticos/fisiología , Vasos Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/fisiología , Ratas Sprague-Dawley , Femenino , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos
13.
Pflugers Arch ; 476(5): 809-820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38421408

RESUMEN

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Contracción Muscular , Músculo Liso , Proteína Relacionada con la Hormona Paratiroidea , Vejiga Urinaria , Animales , Ratas , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Ratas Sprague-Dawley , Masculino , Calcio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología
14.
Am J Physiol Renal Physiol ; 327(1): F49-F60, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779757

RESUMEN

The pore-forming α-subunit of the large-conductance K+ (BK) channel is encoded by a single gene, KCNMA1. BK channel-mediated K+ secretion in the kidney is crucial for overall renal K+ homeostasis in both physiological and pathological conditions. BK channels achieve phenotypic diversity by various mechanisms, including substantial exon rearrangements at seven major alternative splicing sites. However, KCNMA1 alternative splicing in the kidney has not been characterized. The present study aims to identify the major splice variants of mouse Kcnma1 in whole kidney and distal nephron segments. We designed primers that specifically cross exons within each alternative splice site of mouse Kcnma1 and performed real-time quantitative RT-PCR (RT-qPCR) to quantify relative abundance of each splice variant. Our data suggest that Kcnma1 splice variants within mouse kidney are less diverse than in the brain. During postnatal kidney development, most Kcnma1 splice variants at site 5 and the COOH terminus increase in abundance over time. Within the kidney, the regulation of Kcnma1 alternative exon splicing within these two sites by dietary K+ loading is both site and sex specific. In microdissected distal tubules, the Kcnma1 alternative splicing profile, as well as its regulation by dietary K+, are distinctly different than in the whole kidney, suggesting segment and/or cell type specificity in Kcnma1 splicing events. Overall, our data provide evidence that Kcnma1 alternative splicing is regulated during postnatal development and may serve as an important adaptive mechanism to dietary K+ loading in mouse kidney.NEW & NOTEWORTHY We identified the major Kcnma1 splice variants that are specifically expressed in the whole mouse kidney or aldosterone-sensitive distal nephron segments. Our data suggest that Kcnma1 alternative splicing is developmentally regulated and subject to changes in dietary K+.


Asunto(s)
Empalme Alternativo , Riñón , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Potasio en la Dieta , Animales , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Potasio en la Dieta/metabolismo , Riñón/metabolismo , Ratones Endogámicos C57BL , Ratones , Masculino , Regulación del Desarrollo de la Expresión Génica , Exones , Femenino
15.
Eur J Neurosci ; 59(9): 2293-2319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483240

RESUMEN

Ca2+-dependent K+ (BK) channels at varicosities in Xenopus nerve-muscle cell cultures were used to quantify experimentally the instantaneous active zone [Ca2+]AZ resulting from different rates and durations of Ca2+ entry in the absence of extrinsic buffers and correlate this with neurotransmitter release. Ca2+ tail currents produce mean peak [Ca2+]AZ ~ 30 µM; with continued influx, [Ca2+]AZ reaches ~45-60 µM at different rates depending on Ca2+ driving force and duration of influx. Both IBK and release are dependent on Ca2+ microdomains composed of both N- and L-type Ca channels. Domains collapse with a time constant of ~0.6 ms. We have constructed an active zone (AZ) model that approximately fits this data, and depends on incorporation of the high-capacity, low-affinity fixed buffer represented by phospholipid charges in the plasma membrane. Our observations suggest that in this preparation, (1) some BK channels, but few if any of the Ca2+ sensors that trigger release, are located within Ca2+ nanodomains while a large fraction of both are located far enough from Ca channels to be blockable by EGTA, (2) the IBK is more sensitive than the excitatory postsynaptic current (EPSC) to [Ca2+]AZ (K1/2-26 µM vs. ~36 µM [Ca2+]AZ); (3) with increasing [Ca2+]AZ, the IBK grows with a Hill coefficient of 2.5, the EPSC with a coefficient of 3.9; (4) release is dependent on the highest [Ca2+] achieved, independent of the time to reach it; (5) the varicosity synapses differ from mature frog nmjs in significant ways; and (6) BK channels are useful reporters of local [Ca2+]AZ.


Asunto(s)
Calcio , Neurotransmisores , Animales , Calcio/metabolismo , Neurotransmisores/metabolismo , Células Cultivadas , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/metabolismo , Xenopus laevis , Células Musculares/metabolismo , Transmisión Sináptica/fisiología , Sinapsis/metabolismo
16.
Am J Transplant ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734417

RESUMEN

The strategy for progressive multifocal leukoencephalopathy (PML) in solid organ transplant recipients primarily focuses on reducing immunosuppressive therapy. However, this approach offers limited efficacy and carries a high risk of graft loss. Here, we present the case of a 64-year-old male kidney transplant recipient with a high degree of immunosuppression who developed PML in October 2022. Despite the standard reduction of immunosuppressive therapy, the patient's condition continued to deteriorate, as evidenced by worsening neurological symptoms and increasing JC virus (JCV) DNA levels in cerebrospinal fluid. This prompted the innovative use of BKPyV-virus-specific T cell (BKPyV-VST) therapy, given the genetic similarities between BK and JCVs. Infusion of third-party donor BKPyV-VST resulted in clinical stabilization, a significant reduction in JCV-DNA levels, and the emergence of a JCV-specific T cell response, as observed in enzyme-linked immunospot assays and TCRß sequencing. This represents the first case report of successful third-party BKPyV-VST therapy in a kidney recipient presenting PML, without graft-versus-host disease or graft dysfunction.

17.
Am J Transplant ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857784

RESUMEN

Solid organ transplant recipients require ongoing immunosuppression to prevent acute rejection, which puts them at risk of opportunistic infections. Viral infections are particularly challenging to prevent and treat as many establish latency and thus cannot be eliminated, whereas targets for small molecule antiviral medications are limited. Resistance to antivirals and unacceptable toxicity also complicate treatment. Virus-specific T cell therapies aim to restore host-specific immunity to opportunistic viruses that is lacking due to ongoing immunosuppressive therapy. This minireview will provide a state-of-the-art update of the current virus-specific T cell pipeline and translational research that is likely to lead to further treatment options for viral infections in solid organ transplant recipients.

18.
Am J Transplant ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643944

RESUMEN

Reactivation or primary infection with double-stranded DNA viruses is common in recipients of solid organ transplants (SOTs) and is associated with significant morbidity and mortality. Treatment with conventional antiviral medications is limited by toxicities, resistance, and a lack of effective options for adenovirus (ADV) and BK polyomavirus (BKPyV). Virus-specific T cells (VSTs) have been shown to be an effective treatment for infections with ADV, BKPyV, cytomegalovirus (CMV), and Epstein-Barr virus (EBV). Most of these studies have been conducted in stem cell recipients, and no large studies have been published in the SOT population to date. In this study, we report on the outcome of quadrivalent third-party VST infusions in 98 recipients of SOTs in the context of an open-label phase 2 trial. The 98 patients received a total of 181 infusions, with a median of 2 infusions per patient. The overall response rate was 45% for BKPyV, 65% for cytomegalovirus, 68% for ADV, and 61% for Epstein-Barr virus. Twenty percent of patients with posttransplant lymphoproliferative disorder had a complete response and 40% of patients had a partial response. All the VST infusions were well tolerated. We conclude that VSTs are safe and effective in the treatment of viral infections in SOT recipients.

19.
Am J Transplant ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996969

RESUMEN

Reactivation of BK polyomavirus (BKPyV) can cause significant kidney and bladder disease in immunocompromised patients. There are currently no effective, BKPyV-specific therapies. MAU868 is a novel, human IgG1 monoclonal antibody that binds the major capsid protein VP1 of BKPyV with picomolar affinity, neutralizes infection by the four major BKPyV genotypes (EC50 ranging from 0.009 to 0.093 µg/ml; EC90 ranging from 0.102 to 4.160 µg/ml), and has comparable activity against variants with highly prevalent VP1 polymorphisms. No resistance-associated variants were identified in long-term selection studies, indicating a high in vitro barrier-to-resistance. The high-resolution crystal structure of MAU868 in complex with VP1 pentamer identified three key contact residues in VP1 (Y169, R170, K172). A first-in-human study was conducted to assess the safety, tolerability, and pharmacokinetics of MAU868 following intravenous and subcutaneous administration to healthy adults in a randomized, placebo-controlled, double-blinded, single ascending dose design. MAU868 was safe and well-tolerated. All adverse events were Grade 1 and resolved. The pharmacokinetics of MAU868 was typical of a human IgG, with dose-proportional systemic exposure and an elimination half-life ranging between 23 and 30 days. These results demonstrate the potential of MAU868 as a first-in-class therapeutic agent for the treatment or prevention of BKPyV disease.

20.
J Clin Microbiol ; 62(3): e0166923, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38380932

RESUMEN

Interlaboratory agreement of viral load assays depends on the accuracy and uniformity of quantitative calibrators. Previous work demonstrated poor agreement of secondary cytomegalovirus (CMV) standards with nominal values. This study re-evaluated this issue among commercially produced secondary standards for both BK virus (BKV) and CMV, using digital polymerase chain reaction (dPCR) to compare the materials from three different manufacturers. Overall, standards showed an improved agreement compared to prior work, against nominal values in both log10 copies/mL and log10 international unit (IU)/mL, with bias from manufacturer-assigned nominal values of 0.0-0.9 log10 units (either copies or IU)/mL. Standards normalized to IU and those values assigned by dPCR rather than by real-time PCR (qPCR) showed better agreement with nominal values. The latter reinforces prior conclusions regarding the utility of using such methods for quantitative value assignment in reference materials. Quantitative standards have improved over the last several years, and the remaining bias from nominal values might be further reduced by universal implementation of dPCR methods for value assignment, normalized to IU. IMPORTANCE: Interlaboratory agreement of viral load assays depends on accuracy and uniformity of quantitative calibrators. Previous work, published in JCM several years ago, demonstrated poor agreement of secondary cytomegalovirus (CMV) standards with nominal values. This study re-evaluated this issue among commercially produced secondary standards for both BK virus (BKV) and CMV, using digital polymerase chain reaction (dPCR) to compare the materials from three different manufacturers. Overall, standards showed an improved agreement compared to prior work, against nominal values, indicating a substantial improvement in the production of accurate secondary viral standards, while supporting the need for further work in this area and for the broad adaption of international unit (IU) as a reporting standard for quantitative viral load results.


Asunto(s)
Virus BK , Infecciones por Citomegalovirus , Humanos , Citomegalovirus/genética , Infecciones por Citomegalovirus/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carga Viral/métodos , Virus BK/genética , ADN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA