Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2310409121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38427603

RESUMEN

Ovarian immature teratomas (OITs) are malignant tumors originating from the ovarian germ cells that mainly occur during the first 30 y of a female's life. Early age of onset strongly suggests the presence of susceptibility gene mutations for the disease yet to be discovered. Whole exon sequencing was used to screen pathogenic mutations from pedigrees with OITs. A rare missense germline mutation (C262T) in the first exon of the BMP15 gene was identified. In silico calculation suggested that the mutation could impair the formation of mature peptides. In vitro experiments on cell lines confirmed that the mutation caused an 84.7% reduction in the secretion of mature BMP15. Clinical samples from OIT patients also showed a similar pattern of decrease in the BMP15 expression. In the transgenic mouse model, the spontaneous parthenogenetic activation significantly increased in oocytes carrying the T allele. Remarkably, a mouse carrying the T allele developed the phenotype of OIT. Oocyte-specific RNA sequencing revealed that abnormal activation of the H-Ras/MAPK pathway might contribute to the development of OIT. BMP15 was identified as a pathogenic gene for OIT which improved our understanding of the etiology of OIT and provided a potential biomarker for genetic screening of this disorder.


Asunto(s)
Mutación Missense , Teratoma , Humanos , Femenino , Ratones , Animales , Mutación de Línea Germinal , Oocitos/fisiología , Ovario , Proteína Morfogenética Ósea 15/genética , Teratoma/genética
2.
Cell Tissue Res ; 395(1): 117-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049591

RESUMEN

Premature ovarian insufficiency (POI) is defined as the development of hypergonadotropic hypogonadism before the age of 40 with definitive treatment being absent. In the current study, we aim to compare the efficacy of the cell sheet method with an intravenous (IV) application of adipose-derived mesenchymal stem cells (AdMSCs) to the POI with an animal model. In the current prospective study, 6-to-8-week-old Sprague Dawley rats were generated four groups: (i) a control group in which only PBS was administered; (ii) an only-POI group generated by cyclophosphamide; (iii) a POI group treated by way of IV AdMSCs; and (iv) a POI group treated by way of the cell sheet method. Twenty-eight days after an oophorectomy was performed, intracardiac blood was taken. Follicle count, immunohistochemical examination for GDF9, BMP15, and TUNEL were conducted, gene expressions of GDF9 and BMP15 were examined, and E2 was measured in the serum samples. With hematoxylin-eosin, in the third group, multi oocytes follicles were the most remarkable finding. In the fourth group, most of the follicles presented normal morphology. GDF9 involvement was similar between the first and fourth groups. BMP-15 immunoreactivity, in contrast to fourth group, was weak in all stages in the second and third groups. The current attempt represents a pioneer study in the literature in which a cell sheet method is used for the first time in a POI model. These results suggest that the cell sheet method may be a feasible and efficient method for the stem cell treatment of models with POI and could be a new treatment approach in POI.


Asunto(s)
Insuficiencia Ovárica Primaria , Ratas , Humanos , Femenino , Animales , Estudios Prospectivos , Ratas Sprague-Dawley , Insuficiencia Ovárica Primaria/terapia , Insuficiencia Ovárica Primaria/metabolismo , Folículo Ovárico/metabolismo , Tecnología
3.
Zygote ; 32(1): 66-70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099429

RESUMEN

At this time, with advances in medical science, many cancers and chronic diseases are treatable, but one of their side effects is infertility. Some women also want to delay pregnancy for personal reasons. There has been some evidence that kisspeptin activates broad signals by binding to its receptor, suggesting that the role of kisspeptin in direct control of ovarian function includes follicle growth and steroid production. In this study, the effect of kisspeptin on improving the quality and results for human ovarian follicles was investigated. A section of ovary was removed laparoscopically from women between 20 and 35 years of age (n = 12). Pieces were divided randomly into two groups, control and treatment (with 1 µM kisspeptin). Real-time PCR was performed for GDF9, BMP15 and mTOR gene expression assessments. Western blotting was carried out to measure AKT and FOXO3a protein expression. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test; means were considered significantly different at a P-value < 0.05. During treatment with the kisspeptin group, maturity genes are expressed. Therefore, kisspeptin is an effective substance to improve the quality of the human ovarian medium as it increases the maturity of follicles.


Asunto(s)
Kisspeptinas , Ovario , Embarazo , Humanos , Femenino , Kisspeptinas/genética , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Folículo Ovárico/fisiología
4.
Clin Endocrinol (Oxf) ; 98(4): 567-577, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36372988

RESUMEN

OBJECTIVE: Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are critical paracrine regulators of female fertility and are predominantly expressed by oocytes. However, it is unknown if serum concentrations reflect changes in ovarian function and/or reproductive endocrine disorders. This study aimed to determine if serum GDF9/BMP15 are associated with ovarian, pituitary, oestrogenic, androgenic and metabolic characteristics and the ovarian pathologies, polycystic ovarian morphology (PCOM) and polycystic ovary syndrome (PCOS). DESIGN: Women aged 21-45 years (n = 381) were included from a cross-sectional study at the National University Hospital, Singapore. PATIENTS: Participants were volunteers and patients with possible PCOS. MEASUREMENTS: Anthropometric measurements, transvaginal ultrasound scans and serum sampling were performed and a questionnairecompleted. Serum GDF9 and BMP15 concentrations were matched with menstrual cycle length, ovarian protein and steroid hormone production, pituitary hormone production and metabolic assessments in women with PCOM or PCOS and those with neither (control). RESULTS: Serum GDF9 and BMP15 were detectable in 40% and 41% of women, respectively and were positively correlated with each other (r = 0.08, p = 0.003). GDF9, but not BMP15, was positively correlated with ovarian volume (p = 0.02) and antral follicle count (AFC) (p = 0.004), but not with anti-Müllerian hormone (p = 0.05). However, serum GDF9 and BMP15 concentrations were not significantly different between control, PCOM and PCOS women, nor associated with androgenic or metabolic PCOS features. However, the relationship between GDF9 and AFC differed between control, PCOM and PCOS women (p = 0.02). CONCLUSIONS: Serum GDF9 and BMP15 concentrations somewhat reflect ovarian but not androgenic or metabolic characteristics of PCOS, with increased GDF9 reflecting high AFC as seen in PCOM/PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Humanos , Folículo Ovárico/patología , Estudios Transversales , Oocitos , Hormona Antimülleriana , Proteína Morfogenética Ósea 15/metabolismo , Factor 9 de Diferenciación de Crecimiento/metabolismo
5.
Hum Reprod ; 38(4): 686-700, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762771

RESUMEN

STUDY QUESTION: Which substances and signal transduction pathways are potentially active downstream to the effect of FSH and LH in the regulation of human oocyte maturation in vivo? SUMMARY ANSWER: The regulation of human oocyte maturation appears to be a multifactorial process in which several different signal transduction pathways are active. WHAT IS KNOWN ALREADY: Many studies in animal species have provided insight into the mechanisms that govern the final maturation of oocytes. Currently, these studies have identified several different mechanisms downstream to the effects of FSH and LH. Some of the identified mechanisms include the regulation of cAMP/cGMP levels in oocytes involving C-type natriuretic peptide (CNP), effects of epidermal growth factor (EGF)-related peptides such as amphiregulin (AREG) and/or epiregulin (EREG), effect of TGF-ß family members including growth differentiation factor 9 (GDF9) and morphogenetic protein 15 (BMP15), activins/inhibins, follicular fluid meiosis activating sterol (FF-MAS), the growth factor midkine (MDK), and several others. However, to what extent these pathways and mechanisms are active in humans in vivo is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study included 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated the substances and signalling pathways potentially affecting human oocyte maturation in follicular fluid (FF) and granulosa cells (GCs) collected at five time points during the final maturation of follicles. Using ELISA measurement and proteomic profiling of FF and whole genome gene expression in GC, the following substances and their signal transduction pathways were collectively evaluated: CNP, the EGF family, inhibin-A, inhibin-B, activins, FF-MAS, MDK, GDF9, and BMP15. MAIN RESULTS AND THE ROLE OF CHANCE: All the evaluated substances and signal transduction pathways are potentially active in the regulation of human oocyte maturation in vivo except for GDF9/BMP15 signalling. In particular, AREG, inhibins, and MDK were significantly upregulated during the first 12-17 h after initiating the final maturation of follicles and were measured at significantly higher concentrations than previously reported. Additionally, the genes regulating FF-MAS synthesis and metabolism were significantly controlled in favour of accumulation during the first 12-17 h. In contrast, concentrations of CNP were low and did not change during the process of final maturation of follicles, and concentrations of GDF9 and BMP15 were much lower than reported in small antral follicles, suggesting a less pronounced influence from these substances. LARGE SCALE DATA: None. LIMITATIONS, REASONS FOR CAUTION: Although GC and cumulus cells have many similar features, it is a limitation of the current study that information for the corresponding cumulus cells is not available. However, we seldom recovered a cumulus-oocyte complex during the follicle aspiration from 0 to 32 h. WIDER IMPLICATIONS OF THE FINDINGS: Delineating the mechanisms governing the regulation of human oocyte maturation in vivo advances the possibility of developing a platform for IVM that, as for most other mammalian species, results in healthy offspring with good efficacy. Mimicking the intrafollicular conditions during oocyte maturation in vivo in small culture droplets during IVM may enhance oocyte nuclear and cytoplasmic maturation. The primary outlook for such a method is, in the context of fertility preservation, to augment the chances of achieving biological children after a cancer treatment by subjecting oocytes from small antral follicles to IVM. Provided that aspiration of oocytes from small antral follicles in vivo can be developed with good efficacy, IVM may be applied to infertile patients on a larger scale and can provide a cheap alternative to conventional IVF treatment with ovarian stimulation. Successful IVM has the potential to change current established techniques for infertility treatment. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the University Hospital of Copenhagen, Rigshospitalet, the Independent Research Fund Denmark (grant number 0134-00448), and the Interregional EU-sponsored ReproUnion network. There are no conflicts of interest to be declared.


Asunto(s)
Factor de Crecimiento Epidérmico , Proteómica , Animales , Niño , Humanos , Femenino , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Estudios Prospectivos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/metabolismo , Péptido Natriurético Tipo-C/farmacología , Hormona Folículo Estimulante/metabolismo , Inhibinas/metabolismo , Activinas/metabolismo , Mamíferos
6.
J Assist Reprod Genet ; 40(3): 567-576, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689045

RESUMEN

PURPOSE: To analyze the level of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in follicle fluid (FF) and granulosa cells (GCs) derived from young patients with low prognosis for in vitro fertilization and embryo transfer (IVF-ET) treatment. METHODS: A prospective cohort study was carried out by enrolling 52 young patients with low prognosis according to the POSEIDON classification group 3 (low prognosis group) and 51 young patients with normal ovarian reserve (control group). The concentration of the GDF9 and BMP15 proteins in FF was determined by enzyme-linked immunosorbent assay. The mRNA level of the GDF9 and BMP15 in the GCs was measured by quantitative real-time PCR. RESULTS: The concentration of GDF9 (1026.72 ± 159.12 pg/mL vs. 1298.06 ± 185.41 pg/mL) and BMP15 (685.23 ± 143.91 pg/mL vs. 794.37 ± 81.79 pg/mL) in FF and the mRNA level of GDF9 and BMP15 in the GCs and the live birth rate per treatment cycle started (30.77% vs. 50.98%) and oocytes retrieved (4.25 ± 1.91 vs.12.04 ± 4.24) were significantly lower, whereas the canceled cycle rate was significantly higher (9.62% vs. 0) in the low prognosis group compared with the control group (P < 0.05). The expression of GDF9 and BMP15 in the ovary was positively correlated with live birth (P < 0.05). CONCLUSION: The expression of GDF9 and BMP15 in the ovary was decreased in young patients with low prognosis accompanied by a poorer outcome of IVF-ET treatment. TRIAL REGISTRATION: ChiCTR1800016107 (Chinese Clinical Trial Registry), May 11, 2018. ( http://www.chictr.org.cn/edit.aspx?pid=27216&htm=4 ).


Asunto(s)
Proteína Morfogenética Ósea 15 , Factor 9 de Diferenciación de Crecimiento , Animales , Femenino , Proteína Morfogenética Ósea 15/genética , Fertilización In Vitro , Células de la Granulosa/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Oocitos/metabolismo , Pronóstico , Estudios Prospectivos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Reprod Biol Endocrinol ; 20(1): 42, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232444

RESUMEN

BACKGROUND: Bone morphogenetic protein 15 (BMP15) is expressed in oocytes and plays a crucial role in the reproduction of mono-ovulating species. In humans, BMP15 gene mutations lead to imperfect protein function and premature ovarian insufficiency. Here we investigated the BMP15 gene variants in a population of Iranian women with premature ovarian insufficiency. We conducted predictive bioinformatics analysis to further study the outcomes of BMP15 gene alterations. METHODS: Twenty-four well-diagnosed premature ovarian insufficiency cases with normal karyotype participated in this study. The entire coding sequence and exon-intron junctions of the BMP15 gene were analyzed by direct sequencing. In-silico analysis was applied using various pipelines integrated into the Ensembl Variant Effect Predictor online tool. The clinical interpretation was performed based on the approved guidelines. RESULTS: By gene screening of BMP15, we discovered p.N103K, p.A180T, and p.M184T heterozygous variants in 3 unrelated patients. The p.N103K and p.M184T were not annotated on gnomAD, 1000 Genome and/or dbSNP. These mutations were not identified in 800 Iranians whole-exome sequencing that is recorded on Iranom database. We identified the p.N103K variant in a patient with secondary amenorrhea at the age of 17, elevated FSH and atrophic ovaries. The p.M184T was detected in a sporadic case with atrophic ovaries and very high FSH who developed secondary amenorrhea at the age of 31. CONCLUSIONS: Here we newly identified p.N103K and p.M184T mutation in the BMP15 gene associated with idiopathic premature ovarian insufficiency. Both mutations have occurred in the prodomain region of protein. Despite prodomain cleavage through dimerization, it is actively involved in the mature protein function. Further studies elucidating the roles of prodomain would lead to a better understanding of the disease pathogenesis.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Insuficiencia Ovárica Primaria/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteína Morfogenética Ósea 15/química , Niño , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Irán/epidemiología , Persona de Mediana Edad , Mutación Missense , Insuficiencia Ovárica Primaria/epidemiología , Dominios Proteicos/genética , Secuenciación del Exoma/estadística & datos numéricos , Adulto Joven
8.
Reprod Biol Endocrinol ; 20(1): 126, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986324

RESUMEN

BACKGROUND: The suggested effects of the oocyte secreted GDF9 and BMP15 growth factors on oocyte maturation are currently based on recombinant proteins, and little is known about native GDF9 and BMP15 in humans. METHODS: Human immature cumulus-oocyte complexes (COCs) obtained in connection with ovarian tissue cryopreservation (OTC) underwent in vitro maturation (IVM). Oocyte-produced GDF9 and BMP15 were detected in COCs using immunofluorescence, and in fresh GV oocytes and in GV and MII oocytes after IVM by western blot. Concentrations of GDF9, BMP15 homodimers, and GDF9/BMP15 heterodimer in spent media after IVM were measured by ELISA. The relative expression of seven genes from the GDF9 and BMP15 signaling pathways (BMPR2, ALK5, ALK6, SMAD1, SMAD2, SMAD3, and SMAD5) was evaluated in fresh cumulus cells (before IVM) and in cumulus cells from GV and MII oocytes after IVM by RT-qPCR. RESULTS: We detected native pro-mature GDF9 and BMP15 in human oocytes with molecular weights (Mw) of 47 kDa and 43 kDa, respectively. Concentrations of GDF9 and BMP15 in spent media after IVM were detected in 99% and 64% of the samples, respectively. The GDF9/BMP15 heterodimer was detected in 76% of the samples. Overall, the concentration of GDF9 was approximately 10-times higher than BMP15. The concentrations of both GDF9 and BMP15 were significantly lower in spent medium from MII oocytes than in media from oocytes that remained at the GV stage. Concentrations of the GDF9/BMP15 heterodimer did not differ between GV and MII oocytes. Furthermore, BMPR2, SMAD3, and SMAD5 were significantly upregulated in cumulus cells from MII oocytes, indicating that both GDF9 and BMP15 signaling were active during oocyte meiotic resumption in vitro. CONCLUSION: These data suggest that the driving mechanisms for oocyte nuclear maturation may involve both GDF9 and BMP15 homodimers, while the role of the GDF9/BMP15 heterodimer is questionable.


Asunto(s)
Factor 9 de Diferenciación de Crecimiento , Oocitos , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Proteína Morfogenética Ósea 15/farmacología , Células del Cúmulo/metabolismo , Femenino , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Humanos , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/metabolismo , Oogénesis , Transducción de Señal
9.
Reprod Biomed Online ; 45(4): 727-729, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781182

RESUMEN

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 13-year-old girl with primary amenorrhoea? DESIGN: A case report of a next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A homozygous missense variant c.1076C>T, p.(Pro359Leu) in BMP15 was identified. CONCLUSIONS: The biallelic variant c.1076C >T, p.(Pro359Leu) in BMP15 is associated with primary ovarian failure.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Insuficiencia Ovárica Primaria , Adolescente , Femenino , Homocigoto , Humanos , Mutación Missense , Insuficiencia Ovárica Primaria/genética
10.
Can J Physiol Pharmacol ; 100(10): 1018-1027, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037530

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by abnormal outgrowth of pulmonary artery smooth muscle cells (PASMCs) of the media. Abundant expression of endothelin-1 (ET-1) and activated p38 mitogen-activated protein kinase (p38MAPK) has been observed in PAH patients. p38MAPK has been implicated in cell proliferation. An unspecified disturbance in bone morphogenetic protein (BMP) signaling may be involved in the development of PAH. Type I receptors (BMPR1A and BMPR1B) and type II receptor (BMPR2) transduce signals via two distinct pathways, i.e., canonical and non-canonical pathways, activating Smad1/5/8 and p38MAPK, respectively. BMPR1B expression was previously reported to be enhanced in the PASMCs of patients with idiopathic PAH. BMP15 binds specifically to BMPR1B. We assessed the effects of ET-1 on BMP receptor expression and cell proliferation. BMP2 increased BMPR1B expression in human PASMCs after pretreatment with ET-1 in vitro. Although BMP2 alone did not affect PASMC proliferation, BMP2 treatment after ET-1 pretreatment significantly accelerated PASMC proliferation. PH-797804, a selective p38MAPK inhibitor, abrogated this proliferation. Similarly, after ET-1 pretreatment, BMP15 significantly accelerated the proliferation of PASMCs, whereas stimulation with BMP15 alone did not. In conclusion, in PASMCs, ET-1 exposure under pathological conditions alters BMP signaling to activate p38MAPK, resulting in cell proliferation.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Células Cultivadas , Endotelina-1/metabolismo , Endotelina-1/farmacología , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/patología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
J Reprod Dev ; 68(4): 238-245, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35491090

RESUMEN

Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte-cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles (1.2-1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0-100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by 8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.


Asunto(s)
Proteína Morfogenética Ósea 15 , Células del Cúmulo , Animales , Proteína Morfogenética Ósea 15/metabolismo , Proteína Morfogenética Ósea 15/farmacología , Femenino , Células de la Granulosa/metabolismo , Factor 9 de Diferenciación de Crecimiento/metabolismo , Factor 9 de Diferenciación de Crecimiento/farmacología , Oocitos , Folículo Ovárico/metabolismo , Porcinos
12.
Gynecol Endocrinol ; 38(11): 971-977, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36151730

RESUMEN

AIMS: To investigate the regulatory mechanism of SCF expression in human GCs of PCOS related follicles. MATERIALS AND METHODS: SCF, BMP15 and HIF-1α were evaluated in human serums, follicular fluids (FFs) and GCs, which were collected from 69 PCOS patients and 74 normal ovulatory patients. KGN cell line was used in this study. RESULTS: Our results showed that the rate of MII oocyte and 2PN fertilization was lower in PCOS group, though PCOS patients retrieved much more oocytes. The level of BMP15 in FF and the level of SCF in serum and FF were also lower in PCOS patients. We found a weakened expression of HIF-1α and SCF in GCs from PCOS patients when compared with the non-PCOS patients. The expression of HIF-1α and SCF was significantly increased in KGN cells after treating cells with rhBMP15, however, this promotion effects of BMP15 on HIF-1α and SCF expression were obviously abolished by co-treatment with BMP-I receptor inhibitor (DM). Moreover, knock down of HIF-1α expression in KGN cells significantly reduced the expression of SCF in human GCs, in spite of activating BMP15 signaling pathway. CONCLUSIONS: The present study suggest that BMP15 could induce SCF expression by up-regulating HIF-1α expression in human GCs, the aberrance of this signaling pathway might be involved in the PCOS related abnormal follicular development.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Células de la Granulosa/metabolismo , Oocitos/fisiología , Líquido Folicular/metabolismo , Transducción de Señal , Proteína Morfogenética Ósea 15/metabolismo
13.
J Assist Reprod Genet ; 39(9): 2125-2134, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35861920

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) occurs in women before the age of 40 years, accompanied by amenorrhea, hypoestrogenism, hypergonadotropinism, and infertility. The pathology of POI is complex and the molecular genetic mechanisms are poorly understood. Bone morphogenetic protein 15 (BMP15) plays a crucial role in oocyte maturation and follicular development through the activation of granulosa cells. Dysfunction of BMP15 causes ovarian dysgenesis and is related to POI. Identifying pathogenic variants contributes to revealing genetic mechanisms and making clinical diagnoses of POI. METHODS: The study involved two sisters diagnosed with POI. Whole-exome sequencing (WES) was performed to identify causative genes. Sanger sequencing was used to validate the mutations in patients with POI and members of the family with no clinical signs or symptoms. The effect of the novel mutations on the BMP15 structure was analyzed by PSIPRED. By over-expressing wild-type (WT) or mutant BMP15 plasmids in vitro, a functional study of the BMP15 mutant was conducted by real-time qPCR and western blotting. Through cocultivation with HEK293T cells, the effects of secreted BMP15 WT and variants on granulosa cell proliferation and apoptosis were detected through a cell counting kit-8 assay and flow cytometric analysis. RESULTS: We identified biallelic variants in BMP15, c.791G > A (p. R264Q) and c.1076C > T (p. P359L), in two siblings with POI. Both sisters carried the same biallelic variants, while the other female members of their family carried only one of them. Structural prediction showed that the variants have not affected the secondary structure of BMP15 but may change the conformation of water molecules around protein surfaces and thermal stability of BMP15. Real-time qPCR showed no significant difference in mRNA levels among WT and the two variants. Western blotting indicated a reduction in BMP15 expression with the c.791G > A and c.1076C > T variants compared to WT. Moreover, mutants 791G > A and 1076C > T impaired the function of secreted BMP15 in promoting granulosa cell proliferation and suppressing cell apoptosis caused by reactive oxygen species. CONCLUSIONS: This study identified novel biallelic variants, c.791G > A and c.1076C > T, of BMP15 in two siblings with POI. Both missense variants reduced the level of the BMP15 protein and impaired the function of BMP15 in promoting granulosa cell proliferation in vitro. Taken together, our findings provide a novel molecular genetic basis and potential pathogenesis of BMP15 variants in POI.


Asunto(s)
Proteína Morfogenética Ósea 15 , Insuficiencia Ovárica Primaria , Proteína Morfogenética Ósea 15/genética , Femenino , Células HEK293 , Humanos , Hermanos , Secuenciación del Exoma
14.
J Biol Chem ; 295(23): 7981-7991, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32350111

RESUMEN

Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are co-expressed exclusively in oocytes throughout most of folliculogenesis and play central roles in controlling ovarian physiology. Although both growth factors exist as homodimers, recent evidence indicates that GDF9 and BMP15 can also heterodimerize to form the potent growth factor cumulin. Within the cumulin complex, BMP15 "activates" latent GDF9, enabling potent signaling in granulosa cells via type I receptors (i.e. activin receptor-like kinase-4/5 (ALK4/5)) and SMAD2/3 transcription factors. In the cumulin heterodimer, two distinct type I receptor interfaces are formed compared with homodimeric GDF9 and BMP15. Previous studies have highlighted the potential of cumulin to improve treatment of female infertility, but, as a noncovalent heterodimer, cumulin is difficult to produce and purify without contaminating GDF9 and BMP15 homodimers. In this study we addressed this challenge by focusing on the cumulin interface formed by the helix of the GDF9 chain and the fingers of the BMP15 chain. We demonstrate that unique BMP15 finger residues at this site (Arg301, Gly304, His307, and Met369) enable potent activation of the SMAD2/3 pathway. Incorporating these BMP15 residues into latent GDF9 generated a highly potent growth factor, called hereafter Super-GDF9. Super-GDF9 was >1000-fold more potent than WT human GDF9 and 4-fold more potent than cumulin in SMAD2/3-responsive transcriptional assays in granulosa cells. Our demonstration that Super-GDF9 can effectively promote mouse cumulus cell expansion and improve oocyte quality in vitro represents a potential solution to the current challenges of producing and purifying intact cumulin.


Asunto(s)
Factor 9 de Diferenciación de Crecimiento/metabolismo , Oocitos/metabolismo , Animales , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Línea Celular Tumoral , Femenino , Variación Genética/genética , Factor 9 de Diferenciación de Crecimiento/genética , Humanos , Ratones , Modelos Moleculares , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
15.
BMC Genomics ; 22(1): 38, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413103

RESUMEN

BACKGROUND: Atypical external genitalia are often a sign of reproductive organ pathologies and infertility with both environmental or genetic causes, including karyotypic abnormalities. Genome-wide association studies (GWAS) provide a means for identifying chromosomal regions harboring deleterious DNA-variants causing such phenotypes. We performed a GWAS to unravel the causes of incidental cases of atypically small vulvae in German Landrace gilts. RESULTS: A case-control GWAS involving Illumina porcine SNP60 BeadChip-called genotypes of 17 gilts with atypically small vulvae and 1818 control animals (fertile German Landrace sows) identified a significantly associated region on the X-chromosome (P = 8.81 × 10- 43). Inspection of whole-genome sequencing data in the critical area allowed us to pinpoint a likely causal variant in the form of a nonsense mutation of bone morphogenetic protein-15 (BMP15; Sscrofa11.1_X:g.44618787C>T, BMP15:p.R212X). The mutant allele occurs at a frequency of 6.2% in the German Landrace breeding population. Homozygous gilts exhibit underdeveloped, most likely not functional ovaries and are not fertile. Male carriers do not seem to manifest defects. Heterozygous sows produce 0.41±0.02 (P=4.5 × 10-83) piglets more than wildtype animals. However, the mutant allele's positive effect on litter size accompanies a negative impact on lean meat growth. CONCLUSION: Our results provide an example for the power of GWAS in identifying the genetic causes of a fuzzy phenotype and add to the list of natural deleterious BMP15 mutations that affect fertility in a dosage-dependent manner, the first time in a poly-ovulatory species. We advise eradicating the mutant allele from the German Landrace breeding population since the adverse effects on the lean meat growth outweigh the larger litter size in heterozygous sows.


Asunto(s)
Proteína Morfogenética Ósea 15 , Infertilidad , Animales , Proteína Morfogenética Ósea 15/genética , Codón sin Sentido , Femenino , Estudio de Asociación del Genoma Completo , Tamaño de la Camada/genética , Masculino , Embarazo , Porcinos
16.
Mol Hum Reprod ; 27(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411256

RESUMEN

In vitro follicle development from cryopreserved ovarian tissue could become an invaluable assisted reproduction technology for women with early ovarian failure. The challenge lies in producing, from small follicles present in the ovarian cortex, high-quality mature oocytes able to sustain embryo development. In vivo, an optimal combination of hormones and other factors coordinates the development of follicles and their enclosed oocyte. We have investigated the effect of the leukaemia inhibitory factor (LIF) cytokine, alone or in combination with FSH, on sheep in vitro follicle development from the preantral stage onwards. LIF did not alter follicle growth or antrum formation, but it modulated the differentiation of granulosa cells, as revealed by decreased production of anti-Müllerian hormone and abolished FSH-induced stimulation of oestradiol secretion. This modulatory role was also reflected in the abundance of mRNA from 35 genes, analysed by reverse-transcription coupled to microfluidic quantitative PCR. LIF stimulated or at least maintained the expression of genes involved in the dialogue between the oocyte and granulosa cells, through gap junctions (GJA4 encoding connexin 37) or paracrine signalling (Bone morphogenetic protein 15, KIT ligand and their receptors). Finally, the presence of both LIF and FSH during follicle growth strongly improved oocyte meiotic competence: most oocytes (56%) underwent subsequent nuclear maturation, a significant increase compared with their counterparts from follicles of similar size (550-900 µm) cultured with FSH only (28%) or developed in vivo (9%). Their ability to sustain embryo development remains to be evaluated. Combined supplementation with FSH and LIF certainly merits investigation with human follicles.


Asunto(s)
Células de la Granulosa/efectos de los fármacos , Factor Inhibidor de Leucemia/farmacología , Oogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/fisiología , Meiosis/efectos de los fármacos , Meiosis/genética , Oocitos/efectos de los fármacos , Oocitos/fisiología , Oogénesis/genética , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/fisiología , Ovinos
17.
J Reprod Dev ; 67(4): 273-281, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34261834

RESUMEN

During oocyte growth and follicle development, oocytes closely communicate with cumulus cells. We examined the effects of oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the growth and acquisition of meiotic competence of porcine oocytes collected from early antral follicles (1.2-1.5 mm). First, we confirmed that GDF9 and BMP15 mRNAs were expressed almost exclusively in the oocytes. Oocyte-cumulus cell complexes (OCCs) collected from early antral follicles were cultured in growth medium supplemented with 0-100 ng/ml of GDF9 or BMP15 for 5 days. GDF9 dose-dependently increased the OCC diameter, while BMP15 did not. GDF9 and BMP15 had no significant effects on oocyte growth (P > 0.05). When OCCs that had been cultured with 50 and 100 ng/ml BMP15 were subjected to a subsequent maturation culture, they expanded fully by gonadotropic stimulation and 49% and 61% of oocytes matured to metaphase II (MII), respectively. In contrast, GDF9 did not promote cumulus expansion, and < 10% of oocytes matured to MII. Based on the difference in cumulus expansion, we compared the expression of luteinizing hormone/choriogonadotropin receptor (LHCGR) and follicle stimulating hormone receptor (FSHR) mRNAs in cumulus cells. The level of LHCGR mRNA was increased in cumulus cells of the BMP15 group, although there were no significant differences in FSHR mRNA levels among the groups. These results suggest that GDF9 promotes the growth of OCCs and that BMP15 promotes LHCGR mRNA expression in cumulus cells during oocyte growth culture, which may contribute to cumulus expansion and oocyte maturation.


Asunto(s)
Proteína Morfogenética Ósea 15/administración & dosificación , Células del Cúmulo/fisiología , Factor 9 de Diferenciación de Crecimiento/administración & dosificación , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/crecimiento & desarrollo , Porcinos , Animales , Proteína Morfogenética Ósea 15/genética , Células Cultivadas , Medios de Cultivo , Células del Cúmulo/química , Células del Cúmulo/efectos de los fármacos , Femenino , Expresión Génica , Factor 9 de Diferenciación de Crecimiento/genética , Meiosis/efectos de los fármacos , Oocitos/química , Oocitos/efectos de los fármacos , ARN Mensajero/análisis , Receptores de HFE/genética , Receptores de HL/genética
18.
Hum Mutat ; 41(5): 983-997, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31957178

RESUMEN

Bone morphogenetic protein 15 (BMP15) encodes an oocyte factor with a relevant role for folliculogenesis as homodimer or cumulin heterodimer (BMP15-GDF9). Heterozygous BMP15 variants in the precursor or mature peptide had been associated with primary ovarian insufficiency (POI), but the underlying mechanism remains elusive and a double dose of BMP15 was suggested to be required for adequate ovarian reserve. We uncovered two homozygous BMP15 null variants found in two girls with POI and primary amenorrhea. Both heterozygous mothers reported physiological menopause. We then performed western blot, immunofluorescence, and reporter assays to investigate how previously reported missense variants, p.Y235C and p.R329C, located in the precursor or mature domains of BMP15, may affect protein function. The p.R329C variant demonstrates an impaired colocalization with growth/differentiation factor 9 (GDF9) at confocal images and diminished activation of the SMAD pathways at western blot and reporter assays in COV434 follicular cell line. In conclusion, BMP15 null mutations cause POI only in the homozygous state, thus discarding the possibility that isolated BMP15 haploinsufficiency can cause evident ovarian defects. Alternatively, heterozygous BMP15 missense variants may affect ovarian function by interfering with cumulin activity. Our data definitely support the fundamental role of BMP15 in human ovarian folliculogenesis.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación Missense , Folículo Ovárico/metabolismo , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/genética , Adolescente , Alelos , Línea Celular , Hibridación Genómica Comparativa , Consanguinidad , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Folículo Ovárico/crecimiento & desarrollo , Linaje , Fenotipo , Insuficiencia Ovárica Primaria/metabolismo , Eliminación de Secuencia
19.
Biol Reprod ; 103(5): 1054-1068, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32761111

RESUMEN

Bone morphogenetic protein 15 (BMP15), a member of the transforming growth factor beta superfamily, plays an essential role in ovarian follicular development in mono-ovulatory mammalian species. Studies using a biallelic knockout mouse model revealed that BMP15 potentially has just a minimal impact on female fertility and ovarian follicular development in polyovulatory species. In contrast, our previous study demonstrated that in vivo knockdown of BMP15 significantly affected porcine female fertility, as evidenced by the dysplastic ovaries containing significantly decreased numbers of follicles and an increased number of abnormal follicles. This finding implied that BMP15 plays an important role in the regulation of female fertility and ovarian follicular development in polyovulatory species. To further investigate the regulatory role of BMP15 in porcine ovarian and follicular development, here, we describe the efficient generation of BMP15-edited Yorkshire pigs using CRISPR/Cas9. Using artificial insemination experiments, we found that the biallelically edited gilts were all infertile, regardless of different genotypes. One monoallelically edited gilt #4 (Δ66 bp/WT) was fertile and could deliver offspring with a litter size comparable to that of wild-type gilts. Further analysis established that the infertility of biallelically edited gilts was caused by the arrest of follicular development at preantral stages, with formation of numerous structurally abnormal follicles, resulting in streaky ovaries and the absence of obvious estrous cycles. Our results strongly suggest that the role of BMP15 in nonrodent polyovulatory species may be as important as that in mono-ovulatory species.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Fertilidad/genética , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Animales , Proteína Morfogenética Ósea 15/metabolismo , Sistemas CRISPR-Cas , Femenino , Porcinos
20.
Gen Comp Endocrinol ; 297: 113547, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32659273

RESUMEN

Members of transforming growth factor-ß (TGF-ß) superfamily are vital regulators during the development of fish ovary. However, its intraovarian functions in teleost are still unclear. As members of the TGF-ß superfamily, gdf9 and bmp15 are necessary for follicle formation and granulosa cell proliferation. Here in Japanese flounder, quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) analysis showed that gdf9 and bmp15 were mainly expressed in oogonia and oocytes, whereas weakly expressed in non-ovarian tissues. Overexpression of single gdf9 and the co-overexpression with bmp15 could up-regulate the expression of most steroidogenic genes, while the overexpression of single bmp15 could down-regulate the expression of most steroidogenic genes. These findings demonstrate that single gdf9 and the combination with bmp15 may act as "activator", while single bmp15 may act as "inhibitor" in the process of steroidogenesis in flounder. This was also verified in negative feedback regulation of gdf9 and bmp15 during hormone treatment. High concentration of human chorionic gonadotropin (hCG) could down-regulate gdf9 and up-regulate bmp15, which were beneficial for the homeostasis of hCG hormone. Besides, knockdown of either gdf9 or bmp15 could significantly down-regulate most steroidogenic genes. This indicated that heterodimer of GDF9:BMP15 might be the most bioactive ligand in gonad development of flounder. Taken together, our study provided a novel recognition that gdf9 and bmp15 could regulate steroidogenesis in teleost through mechanism different from that in mammals.


Asunto(s)
Proteína Morfogenética Ósea 15/metabolismo , Lenguado/metabolismo , Factor 9 de Diferenciación de Crecimiento/metabolismo , Ovario/metabolismo , Esteroides/biosíntesis , Animales , Proteína Morfogenética Ósea 15/genética , Línea Celular , Gonadotropina Coriónica/farmacología , Exones/genética , Femenino , Lenguado/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genoma , Factor 9 de Diferenciación de Crecimiento/genética , Humanos , Intrones/genética , Japón , Ovario/efectos de los fármacos , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA