Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38968937

RESUMEN

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.

2.
Cell ; 179(2): 470-484.e21, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31543265

RESUMEN

Eukaryotic chromatin is highly condensed but dynamically accessible to regulation and organized into subdomains. We demonstrate that reconstituted chromatin undergoes histone tail-driven liquid-liquid phase separation (LLPS) in physiologic salt and when microinjected into cell nuclei, producing dense and dynamic droplets. Linker histone H1 and internucleosome linker lengths shared across eukaryotes promote phase separation of chromatin, tune droplet properties, and coordinate to form condensates of consistent density in manners that parallel chromatin behavior in cells. Histone acetylation by p300 antagonizes chromatin phase separation, dissolving droplets in vitro and decreasing droplet formation in nuclei. In the presence of multi-bromodomain proteins, such as BRD4, highly acetylated chromatin forms a new phase-separated state with droplets of distinct physical properties, which can be immiscible with unmodified chromatin droplets, mimicking nuclear chromatin subdomains. Our data suggest a framework, based on intrinsic phase separation of the chromatin polymer, for understanding the organization and regulation of eukaryotic genomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Escherichia coli/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Células Sf9
3.
Immunity ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38843835

RESUMEN

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.

4.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754817

RESUMEN

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo , Vitamina D/farmacología , Animales , Calcitriol/análogos & derivados , Calcitriol/farmacología , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
5.
Cell ; 170(6): 1209-1223.e20, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28823556

RESUMEN

Fragile X syndrome (FXS) is a leading genetic cause of intellectual disability and autism. FXS results from the loss of function of fragile X mental retardation protein (FMRP), which represses translation of target transcripts. Most of the well-characterized target transcripts of FMRP are synaptic proteins, yet targeting these proteins has not provided effective treatments. We examined a group of FMRP targets that encode transcriptional regulators, particularly chromatin-associated proteins. Loss of FMRP in mice results in widespread changes in chromatin regulation and aberrant gene expression. To determine if targeting epigenetic factors could reverse phenotypes associated with the disorder, we focused on Brd4, a BET protein and chromatin reader targeted by FMRP. Inhibition of Brd4 function alleviated many of the phenotypes associated with FXS. We conclude that loss of FMRP results in significant epigenetic misregulation and that targeting transcription via epigenetic regulators like Brd4 may provide new treatments for FXS.


Asunto(s)
Azepinas/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/farmacología , Animales , Células Cultivadas , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Ratones , Ratones Noqueados , Naftiridinas/farmacología , Neuronas/metabolismo , Fenazinas , Transcripción Genética
6.
Cell ; 168(6): 1000-1014.e15, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283057

RESUMEN

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and an unrecognized higher-order property of super-enhancers in RNA processing beyond transcription.


Asunto(s)
Elementos de Facilitación Genéticos , MicroARNs/metabolismo , Animales , Azepinas/farmacología , Regulación de la Expresión Génica , Código de Histonas , Humanos , Ratones , Neoplasias/genética , Especificidad de Órganos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcripción Genética , Triazoles/farmacología
7.
Mol Cell ; 84(2): 202-220.e15, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38103559

RESUMEN

Compounds binding to the bromodomains of bromodomain and extra-terminal (BET) family proteins, particularly BRD4, are promising anticancer agents. Nevertheless, side effects and drug resistance pose significant obstacles in BET-based therapeutics development. Using high-throughput screening of a 200,000-compound library, we identified small molecules targeting a phosphorylated intrinsically disordered region (IDR) of BRD4 that inhibit phospho-BRD4 (pBRD4)-dependent human papillomavirus (HPV) genome replication in HPV-containing keratinocytes. Proteomic profiling identified two DNA damage response factors-53BP1 and BARD1-crucial for differentiation-associated HPV genome amplification. pBRD4-mediated recruitment of 53BP1 and BARD1 to the HPV origin of replication occurs in a spatiotemporal and BRD4 long (BRD4-L) and short (BRD4-S) isoform-specific manner. This recruitment is disrupted by phospho-IDR-targeting compounds with little perturbation of the global transcriptome and BRD4 chromatin landscape. The discovery of these protein-protein interaction inhibitors (PPIi) not only demonstrates the feasibility of developing PPIi against phospho-IDRs but also uncovers antiviral agents targeting an epigenetic regulator essential for virus-host interaction and cancer development.


Asunto(s)
Infecciones por Papillomavirus , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Virus del Papiloma Humano , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Proteómica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas Virales/genética , Replicación Viral/fisiología , Reparación del ADN , Proteínas que Contienen Bromodominio
8.
Mol Cell ; 83(16): 2896-2910.e4, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37442129

RESUMEN

The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Histonas/metabolismo , Regulación de la Expresión Génica , Cromatina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
9.
Mol Cell ; 83(22): 3972-3999, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37922911

RESUMEN

The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.


Asunto(s)
Enfermedades Neurodegenerativas , ARN Polimerasa II , Animales , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Elongación Transcripcional/genética , Enfermedades Neurodegenerativas/genética , Transcripción Genética , Regulación de la Expresión Génica , Envejecimiento/genética , Genes del Desarrollo
10.
Mol Cell ; 82(1): 123-139.e7, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34910943

RESUMEN

Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Neoplasias Colorrectales/enzimología , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Quinasa 8 Dependiente de Ciclina/genética , Quinasas Ciclina-Dependientes/genética , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Complejo Mediador/antagonistas & inhibidores , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cell ; 82(10): 1878-1893.e10, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35537448

RESUMEN

Transcription factors (TFs) consist of a DNA-binding domain and an activation domain (AD) that are frequently considered to be independent and exchangeable modules. However, recent studies report that the physicochemical properties of the AD can control TF assembly at chromatin by driving phase separation into transcriptional condensates. Here, we dissected transcription activation by comparing different synthetic TFs at a reporter gene array with real-time single-cell fluorescence microscopy. In these experiments, binding site occupancy, residence time, and coactivator recruitment in relation to multivalent TF interactions were compared. While phase separation propensity and activation strength of the AD were linked, the actual formation of liquid-like TF droplets had a neutral or inhibitory effect on transcription activation. We conclude that multivalent AD-mediated interactions enhance the transcription activation capacity of a TF by increasing its residence time in the chromatin-bound state and facilitating the recruitment of coactivators independent of phase separation.


Asunto(s)
Cromatina , Factores de Transcripción , Sitios de Unión , Cromatina/genética , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
12.
Immunity ; 53(1): 143-157.e8, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32640256

RESUMEN

Regulatory T (Treg) cells play a pivotal role in suppressing auto-reactive T cells and maintaining immune homeostasis. Treg cell development and function are dependent on the transcription factor Foxp3. Here, we performed a genome-wide CRISPR loss-of-function screen to identify Foxp3 regulators in mouse primary Treg cells. Foxp3 regulators were enriched in genes encoding subunits of the SWI/SNF nucleosome-remodeling and SAGA chromatin-modifying complexes. Among the three SWI/SNF-related complexes, the Brd9-containing non-canonical (nc) BAF complex promoted Foxp3 expression, whereas the PBAF complex was repressive. Chemical-induced degradation of Brd9 led to reduced Foxp3 expression and reduced Treg cell function in vitro. Brd9 ablation compromised Treg cell function in inflammatory disease and tumor immunity in vivo. Furthermore, Brd9 promoted Foxp3 binding and expression of a subset of Foxp3 target genes. Our findings provide an unbiased analysis of the genetic networks regulating Foxp3 and reveal ncBAF as a target for therapeutic manipulation of Treg cell function.


Asunto(s)
Sistemas CRISPR-Cas/genética , Factores de Transcripción Forkhead/metabolismo , Neoplasias/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/metabolismo , Animales , Autoinmunidad/inmunología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleosomas/inmunología , ARN Guía de Kinetoplastida/genética , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética
13.
Mol Cell ; 81(10): 2166-2182.e6, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33765415

RESUMEN

The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.


Asunto(s)
Elementos de Facilitación Genéticos , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Biocatálisis , Cromatina/metabolismo , Regulación hacia Abajo/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Unión Proteica , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo
14.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34375583

RESUMEN

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas del Tejido Nervioso/genética , Factores de Empalme de ARN/genética , ARN/genética , Factores de Transcripción/genética , Adenosina/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Humanos , Metilación , Elementos Reguladores de la Transcripción/genética , Activación Transcripcional/genética
15.
Mol Cell ; 81(17): 3589-3603.e13, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34324863

RESUMEN

Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Nucleares/fisiología , Elongación de la Transcripción Genética/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología
16.
Genes Dev ; 35(3-4): 273-285, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446572

RESUMEN

The regulation of gene expression catalyzed by RNA polymerase II (Pol II) requires a host of accessory factors to ensure cell growth, differentiation, and survival under environmental stress. Here, using the auxin-inducible degradation (AID) system to study transcriptional activities of the bromodomain and extraterminal domain (BET) and super elongation complex (SEC) families, we found that the CDK9-containing BRD4 complex is required for the release of Pol II from promoter-proximal pausing for most genes, while the CDK9-containing SEC is required for activated transcription in the heat shock response. By using both the proteolysis targeting chimera (PROTAC) dBET6 and the AID system, we found that dBET6 treatment results in two major effects: increased pausing due to BRD4 loss, and reduced enhancer activity attributable to BRD2 loss. In the heat shock response, while auxin-mediated depletion of the AFF4 subunit of the SEC has a more severe defect than AFF1 depletion, simultaneous depletion of AFF1 and AFF4 leads to a stronger attenuation of the heat shock response, similar to treatment with the SEC inhibitor KL-1, suggesting a possible redundancy among SEC family members. This study highlights the usefulness of orthogonal acute depletion/inhibition strategies to identify distinct and redundant biological functions among Pol II elongation factor paralogs.


Asunto(s)
Expresión Génica/genética , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células HCT116 , Respuesta al Choque Térmico , Humanos , Factores de Elongación de Péptidos/genética , Proteínas/genética , Proteínas/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/genética
17.
Mol Cell ; 78(6): 1114-1132.e10, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446320

RESUMEN

Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Invasividad Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Transcripción Genética/genética , Neoplasias de la Mama Triple Negativas/genética
18.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526163

RESUMEN

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Asunto(s)
Azepinas/farmacología , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Interneuronas/patología , Proteína 2 de Unión a Metil-CpG/fisiología , Síndrome de Rett/patología , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Triazoles/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Femenino , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Factores de Transcripción/genética
19.
Mol Cell ; 78(1): 112-126.e12, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243828

RESUMEN

Delineating how chromosomes fold at length scales beyond one megabase remains obscure relative to smaller-scale folding into TADs, loops, and nucleosomes. We find that rather than simply unfolding chromatin, histone hyperacetylation results in interactions between distant genomic loci separated by tens to hundreds of megabases, even in the absence of transcription. These hyperacetylated "megadomains" are formed by the BRD4-NUT fusion oncoprotein, interact both within and between chromosomes, and form a specific nuclear subcompartment that has elevated gene activity with respect to other subcompartments. Pharmacological degradation of BRD4-NUT results in collapse of megadomains and attenuation of the interactions between them. In contrast, these interactions persist and contacts between newly acetylated regions are formed after inhibiting RNA polymerase II initiation. Our structure-function approach thus reveals that broad chromatin domains of identical biochemical composition, independent of transcription, form nuclear subcompartments, and also indicates the potential of altering chromosome structure for treating human disease.


Asunto(s)
Núcleo Celular/genética , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Acetilación , Línea Celular , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/efectos de los fármacos , Cromosomas de los Mamíferos/metabolismo , Expresión Génica , Humanos , Masculino , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo
20.
EMBO J ; 42(21): e114719, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37737566

RESUMEN

Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.


Asunto(s)
Quinasa I-kappa B , Transducción de Señal , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Janus/genética , Factores de Transcripción STAT , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA