Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2311709121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324573

RESUMEN

Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Plasticidad Neuronal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
2.
Neuron ; 110(12): 1978-1992.e6, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447088

RESUMEN

Neurons in the hippocampus exhibit a striking selectivity for specific combinations of sensory features, forming representations that are thought to subserve episodic memory. Even during completely novel experiences, hippocampal "place cells" are rapidly configured such that the population sparsely encodes visited locations, stabilizing within minutes of the first exposure to a new environment. What mechanisms enable this fast encoding of experience? Using virtual reality and neural population recordings in mice, we dissected the effects of novelty and experience on the dynamics of place field formation. During place field formation, many CA1 neurons immediately modulated the amplitude of their activity and shifted the location of their field, rapid changes in tuning predicted by behavioral timescale synaptic plasticity (BTSP). Signatures of BTSP were particularly enriched during the exploration of a novel context and decayed with experience. Our data suggest that novelty modulates the effective learning rate in CA1, favoring rapid mechanisms of field formation to encode a new experience.


Asunto(s)
Hipocampo , Células de Lugar , Animales , Región CA1 Hipocampal/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Ratones , Plasticidad Neuronal/fisiología , Neuronas/fisiología
3.
Neuron ; 110(5): 783-794.e6, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990571

RESUMEN

Hippocampal place cells underlie spatial navigation and memory. Remarkably, CA1 pyramidal neurons can form new place fields within a single trial by undergoing rapid plasticity. However, local feedback circuits likely restrict the rapid recruitment of individual neurons into ensemble representations. This interaction between circuit dynamics and rapid feature coding remains unexplored. Here, we developed "all-optical" approaches combining novel optogenetic induction of rapidly forming place fields with 2-photon activity imaging during spatial navigation in mice. We find that induction efficacy depends strongly on the density of co-activated neurons. Place fields can be reliably induced in single cells, but induction fails during co-activation of larger subpopulations due to local circuit constraints imposed by recurrent inhibition. Temporary relief of local inhibition permits the simultaneous induction of place fields in larger ensembles. We demonstrate the behavioral implications of these dynamics, showing that our ensemble place field induction protocol can enhance subsequent spatial association learning.


Asunto(s)
Hipocampo , Células de Lugar , Animales , Región CA1 Hipocampal/fisiología , Retroalimentación , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Células Piramidales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA