Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(2): 143-154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381127

RESUMEN

Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Oryza/genética , Expresión Génica Ectópica , Genes prv , Xanthomonas/genética , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell Physiol ; 65(8): 1261-1270, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38757819

RESUMEN

Xanthomonas species infect many important crops and cause huge yield loss. These pathogens deliver transcription activator-like (TAL) effectors into the cytoplasm of plant cells. TAL effectors move to host nuclei, directly bind to the promoters of host susceptible genes, and activate their transcription. However, the molecular mechanisms by which TAL effectors induce host transcription remain unclear. We herein demonstrated that TAL effectors interacted with the SIMILAR TO RCD ONE (SRO) family proteins OsSRO1a and OsSRO1b in nuclei. A transactivation assay using rice protoplasts indicated that OsSRO1a and OsSRO1b enhanced the activation of the OsSWEET14 promoter by the TAL effector AvrXa7. The AvrXa7-mediated expression of OsSWEET14 was significantly reduced in ossro1a mutants. However, the overexpression of OsSRO1a increased disease resistance by up-regulating the expression of defense-related genes, such as WRKY62 and PBZ1. This was attributed to OsSRO1a and OsSRO1b also enhancing the transcriptional activity of WRKY45, a direct regulator of WRKY62 expression. Therefore, OsSRO1a and OsSRO1b appear to positively contribute to transcription mediated by bacterial TAL effectors and rice transcription factors.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Efectores Tipo Activadores de la Transcripción , Xanthomonas , Oryza/genética , Oryza/microbiología , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Efectores Tipo Activadores de la Transcripción/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Interacciones Huésped-Patógeno/genética
3.
BMC Plant Biol ; 24(1): 695, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044125

RESUMEN

The bacterial blight of wheat is an important global disease causing a significant decline in crop yield. Nanotechnology offers a potential solution for managing plant diseases. Therefore, this research aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in controlling bacterial blight in 27 locally grown wheat cultivars. The study examined the impact of AgNPs at three distinct time points: 1, 3, and 5 days after the onset of the disease. Biochemical assay revealed that one day after applying the disease stress, the Inia cultivar had the highest amount of soluble protein (55.60 µg.g-1FW) content in the treatment without AgNPs. The Azadi cultivar, without AgNPs treatment, had the lowest amount of soluble protein content (15.71 µg.g-1FW). The Tabasi cultivar had the highest activity of the superoxide dismutase (SOD) (61.62 mM.g-1FW) with the combination treatment of AgNPs. On the other hand, the Karchia cultivar had the lowest SOD activity (0.6 mM.g-1FW) in the treatment of disease without AgNPs. Furthermore, three days after the application of stress, the Mahdavi cultivar had the highest amount of soluble protein content (54.16 µg.g-1FW) in the treatment of disease without AgNPs. The Niknejad cultivar had the highest activity of the SOD (74.15 mM.g-1FW) with the combined treatment of the disease without AgNPs. The Kavir cultivar had the lowest SOD activity (1.95 mM.g-1FW) and the lowest peroxidase (POX) activity (0.241 mM g-1FW min-1) in the treatment of the disease with AgNPs. Five days after exposure to stress, the Mahooti cultivar had the highest SOD activity (88.12 mM.g-1FW) with the combined treatment of the disease with AgNPs, and the Karchia cultivar had the lowest SOD activity (2.39 mM.g-1FW) in the treatment of the disease with AgNPs. Further, the results indicated that exposure to AgNPs could improve the antioxidant properties of wheat seeds in blight-infected and disease-free conditions in some cultivars.


Asunto(s)
Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Triticum , Triticum/microbiología , Triticum/efectos de los fármacos , Plata/farmacología , Enfermedades de las Plantas/microbiología , Superóxido Dismutasa/metabolismo , Proteínas de Plantas/metabolismo
4.
Planta ; 259(5): 112, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581602

RESUMEN

MAIN CONCLUSION: The three, by mutagenesis produced genes OsPi21, OsXa5, and OsBADH2, generated novel lines exhibiting desired fragrance and improved resistance. Elite sterile lines are the basis for hybrid rice breeding, and rice quality and disease resistance become the focus of new sterile lines breeding. Since there are few sterile lines with fragrance and high resistance to blast and bacterial blight at the same time in hybrid rice production, we here integrated the simultaneous mutagenesis of three genes, OsPi21, OsXa5, and OsBADH2, into Zhi 5012S, an elite thermo-sensitive genic male sterile (TGMS) variety, using the CRISPR/Cas9 system, thus eventually generated novel sterile lines would exhibit desired popcorn-like fragrance and improved resistance to blast and bacterial blight but without a loss in major agricultural traits such as yield. Collectively, this study develops valuable germplasm resources for the development of two-line hybrid rice with disease resistance, which provides a way to rapid generation of novel TGMS lines with elite traits.


Asunto(s)
Sistemas CRISPR-Cas , Oryza , Oryza/genética , Resistencia a la Enfermedad/genética , Odorantes , Temperatura , Fitomejoramiento
5.
Plant Biotechnol J ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768314

RESUMEN

Cassava bacterial blight significantly affects cassava yield worldwide, while major cassava cultivars are susceptible to this disease. Therefore, it is crucial to identify cassava disease resistance gene networks and defence molecules for the genetic improvement of cassava cultivars. In this study, we found that MeHB16 transcription factor as a differentially expressed gene in cassava cultivars with contrasting disease resistance, positively modulated disease resistance by modulating defence molecule lignin accumulation. Further investigation showed that MeHB16 physically interacted with itself via the leucine-Zippe domain (L-Zip), which was necessary for the transcriptional activation of downstream lignin biosynthesis genes. In addition, protein kinase MeKIN10 directly interacted with MeHB16 to promote its phosphorylation at Ser6, which in turn enhanced MeHB16 self-association and downstream lignin biosynthesis. In summary, this study revealed the molecular network of MeKIN10-mediated MeHB16 protein phosphorylation improved cassava bacterial blight resistance by fine-tuning lignin biosynthesis and provides candidate genes and the defence molecule for improving cassava disease resistance.

6.
Plant Biotechnol J ; 22(8): 2186-2200, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38587024

RESUMEN

The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Xanthomonas , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Oryza/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética
7.
J Exp Bot ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171750

RESUMEN

Amino acid homeostasis is interconnected with the immune network of plants. During plant-pathogen interaction, amino acid transporters (AATs) have been shown to be involved in plant immune responses. However, the molecular mechanism by which how AATs function in this process remains elusive. In this study, we identify OsMP1 that acts as a quantitative trait locus against blast fungus from a joint analysis of GWAS and QTL mapping in rice. Heterogeneous expression of OsMP1 in yeast supports its function in transporting a wide range of amino acids, including Thr, Ser, Phe, His and Glu. OsMP1 could also mediate 15N-Glu efflux and influx in Xenopus oocyte cells. The expression of OsMP1 is dramatically induced by Magnaporthe oryzae in the resistant landrace Heikezijing, while remaining unresponsive in the susceptible landrace Suyunuo. Overexpressing OsMP1 in Suyunuo enhances disease resistance to blast fungus and leaf-blight bacterium without yield penalty. Furthermore, the overexpression of OsMP1 leads to increased accumulation of Thr, Ser, Phe and His in the leaves. And the heightened levels of these amino acids contribute to reduced disease susceptibility, which is associated with upregulated jasmonic acid pathway. Thus, our results elucidate the pivotal role of OsMP1 in disease resistance and provide a potential target for breeding more resistant rice cultivars without compromising yield.

8.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709339

RESUMEN

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Oryza/genética , Oryza/microbiología , Genes de Plantas/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Fitomejoramiento/métodos
9.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717621

RESUMEN

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Genes Recesivos , Genotipo , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética , Xanthomonas/patogenicidad
10.
Mol Biol Rep ; 51(1): 735, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874770

RESUMEN

BACKGROUND: Pomegranate (Punica granatum L.) is a tropical fruit crop of pharma-nutritional importance. However, it faces farming challenges due to pests and diseases, particularly bacterial blight and wilt. Developing resistant cultivars is crucial for sustainable pomegranate cultivation, and understanding resistance's genetic basis is essential. METHODS AND RESULTS: We used an extensive resistance gene analogues (RGA) prediction tool to identify 958 RGAs, classified into Nucleotide Binding Site-leucine-rich repeat (NBS-LRR) proteins, receptor-like kinases (RLKs), receptor-like proteins (RLPs), Transmembrane coiled-coil (TM-CC), and nine non-canonical RGAs. RGAs were distributed across all eight chromosomes, with chromosome 02 containing the most RGAs (161), and chromosome 08 having the highest density (4.42 RGA/Mb). NBS-LRR genes were predominantly present on chromosomes 08 and 02, whereas RLKs and RLPs were primarily located on chromosomes 04 and 07. Gene ontology analysis revealed that 475 RGAs were associated with defence against various biotic stresses. Using RNAseq, we identified 120 differentially expressed RGAs, with RLKs (74) being prominent among the differentially expressed genes. CONCLUSION: The discovery of these RGAs is a significant step towards breeding pomegranates for pest and disease resistance. The differentially expressed RLKs hold promise for developing resistant cultivars against bacterial blight, thereby contributing to the sustainability of pomegranate cultivation.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Granada (Fruta) , Transcriptoma , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Granada (Fruta)/genética , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Xanthomonas/patogenicidad
11.
Phytopathology ; : PHYTO08230272R, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37913555

RESUMEN

Walnut bacterial blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most prevalent diseases of walnut (Juglans spp.), causing significant reductions in nut yield and important losses in economy. Enoyl-acyl carrier protein (ACP) reductase (ENR) is one of the key enzymes involved in the biosynthesis of bacterial fatty acids. In this study, we identified a single ENR-encoding gene, RS10040, in the genome of the XajDW3F3 strain. Sequence alignment analysis suggested RS10040 as a candidate fabV gene in Xaj. Expression of XajfabV restored the growth of the Escherichia coli fabI temperature-sensitive mutant under a nonpermissive growth condition. In vitro assays demonstrated that XajFabV catalyzed enoyl-ACPs of various chain lengths to acyl-ACPs, demonstrating its role in de novo fatty acid biosynthesis. Furthermore, we confirmed that XajfabV is an essential gene for growth, as no XajfabV deletion mutant could be obtained, although XajfabV in the chromosome could be deleted after compensating with a functional ENR-encoding gene via an exogenous plasmid. The fabV replacement mutants showed similar growth characteristic and fatty acid compositions. Our data further identified that fabV conferred Xaj with tolerance to various environmental stresses. Although XajFabV conferred Xaj with triclosan resistance, the resistance of Xaj was weaker than that found for Pseudomonas aeruginosa. Moreover, triclosan exhibited a control effect against infection of the ΔfabV/EcfabI to its host walnut. This study revealed the function of XajFabV and laid a theoretical foundation for the fatty acid synthesis mechanism of Xaj.

12.
Plant Cell Rep ; 43(2): 31, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195905

RESUMEN

KEY MESSAGE: OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.


Asunto(s)
Oryza , Oryza/genética , Resistencia a la Enfermedad/genética , Agricultura , Fenotipo
13.
Plant Dis ; 108(6): 1755-1761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38213121

RESUMEN

Bacterial blight of carrot, caused by Xanthomonas hortorum pv. carotae (Xhc), is an economically important disease in carrot (Daucus carota subsp. sativus) seed production. The objectives of this study were to determine if Xhc was present on noncarrot crops grown in central Oregon and, if detected, evaluate its ability to colonize alternative hosts. Surveys of three carrot seed fields and adjacent fields of rye (Secale cereale), alfalfa (Medicago sativa), parsley root (Petroselinum crispum var. tuberosum), and Kentucky bluegrass (Poa pratensis) demonstrated that Xhc was present on noncarrot crops. Greenhouse experiments were conducted to determine the ability of Xhc to colonize crops cultivated in the region. Carrot, alfalfa, curly parsley (Petroselinum crispum), Kentucky bluegrass, mint (Mentha × piperita), parsley root, roughstalk bluegrass (Poa trivialis), and wheat (Triticum aestivum) plants were spray-inoculated with Xhc and destructively sampled at 1, 7, 14, and 28 or 25 days post-inoculation. Xhc populations were quantified using viability quantitative PCR and dilution plating. A significant (P ≤ 0.03) effect of crop was observed at 1, 14, and 28 or 25 days in both experiments. While carrot hosted the most Xhc at the final timepoint, other crops supported epiphytic Xhc populations including wheat and both bluegrasses. Mint, parsley root, and alfalfa hosted the least Xhc. Bacterial blight symptoms were observed on carrots but not on noncarrot crops. This suggests that crops grown in central Oregon have the potential to be asymptomatically colonized by Xhc and may serve as reservoirs of the pathogen in carrot seed production systems.


Asunto(s)
Productos Agrícolas , Daucus carota , Enfermedades de las Plantas , Oregon , Enfermedades de las Plantas/microbiología , Daucus carota/microbiología , Productos Agrícolas/microbiología , Medicago sativa/microbiología
14.
Plant Dis ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389385

RESUMEN

In May 2023, pennycress (Thlaspi arvense, L.) lines undergoing seed production in the Walnut Street Greenhouse at the University of Wisconsin-Madison displayed symptoms of chlorosis and black necrotic leaf spots (Fig. S1-A). Lesions eventually enlarged to 1-2 cm in diameter, became necrotic, and coalesced to cover a substantial portion of leaves. Symptoms were observed in ~30% of the pennycress lines adversely affecting overall growth and reproduction. Symptomatic leaves were surface sterilized for 30 seconds in 0.75% sodium hypochlorite, rinsed in sterile deionized water, and bacteria were isolated using three-phase streaking of symptomatic tissue onto KB medium (King et al., 1954). Single colonies of three isolates (creamy white to yellow) from this initial isolation were streaked onto KB medium to obtain pure cultures. Individual colonies were transferred for growth overnight in nutrient broth (Difco) and an equal amount of the broth was added to 30% glycerol in deionized (di) water and stored at -80 °C. To validate Koch's Postulates, bacteria were grown from these stocks on Yeast Dextrose Calcium Carbonate medium (Wilson et al., 1967) and were used to inoculate 5-week-old pennycress plants in the greenhouse. The bacteria were grown for 48 hours at 26°C, suspended in 300 ml of 0.05 M PBS buffer (pH=7.2) for inoculum preparation. Plants were inoculated with three bacterial isolates (approx. 108 CFU/ml) by piercing the mid veins or hydathodes with a sterilized toothpick dipped in the suspension. Inoculated plants were then enclosed in clear plastic bags for 24-48 hours and maintained in the greenhouse at a constant temperature of 26°C with a 16-hour photoperiod. After seven days, water-soaked lesions appeared on the inoculated leaves, eventually developing into the characteristic black spots (Fig. S1-B). DNA from the original isolates was extracted, and 16S PCR and sequencing of the positive bands was done. The negative control only produced brown spots at the site of inoculation (Fig. S1-C). The primer sequences were as follows: 27F: AGAGTTTGATCMTGGCTCAG; 1492R: GGTTACCTTGTTACGACTT (Eden et al., 1991; Weisburg et al., 1991). A BLAST analysis showed that the isolates had an E value of 0.0 to the genus Xanthomonas as well as 100% identity. Amplification and sequencing of the bacterium using gyrB amplicons revealed a 99-100% pairwise match with Xc. To enhance taxonomy resolution and confirm the identity of these isolates, the complete genomes of three samples were sequenced using NextSeq2000 Illumina platform (NCBI bioproject ID PRJNA1040293). Average Nucleotide Identity (ANI) analysis was conducted with representative strains from the Xc species (Dubrow et al., 2022), using PanExplorer (Dereeper et al., 2020) featuring integrated FastANI module (Jain et al., 2018). The isolates genomes exhibited over 98% identity and clustered with that of Xc pv. incanae and Xc pv. barbarae (Fig S2). Further work will be required to identify the pathovar of Xc identified in this study through phenotypic host range assay. This marks the first documented case of Xc in pennycress in the Midwestern US. Given the potential use of pennycress as a cover crop in the region, further investigations are warranted to assess its economic impact on production and develop management strategies.

15.
Genomics ; 115(3): 110626, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062363

RESUMEN

Receptor-like cytoplasmic kinases (RLCKs) play important roles in various developmental processes and stress responses in plants. Whereas, the detailed information of this family in cassava has not clear yet. In this study, A total of 322 MeRLCK genes were identified in the cassava genome, and they could be divided into twelve clades (Clades I-XII) according to their phylogenetic relationships. Most RLCK members in the same clade have similar characteristics and motif compositions. Over half of the RLCKs possess cis-elements in their promoters that respond to ABA, MeJA, defense reactions, and stress. Under Xpm11 infection, the expression levels of four genes show significant changes, suggesting their involvement in Xpm11 resistance. Two RLCK (MeRLCK11 and MeRLCK84) genes potentially involved in resistance to cassava bacterial blight were identified through VIGS experiments. This work laid the foundation for studying the function of the cassava RLCK genes, especially the genes related to pathogen resistance.


Asunto(s)
Manihot , Manihot/genética , Manihot/metabolismo , Manihot/microbiología , Resistencia a la Enfermedad , Filogenia , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
16.
Curr Issues Mol Biol ; 45(7): 5389-5402, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504258

RESUMEN

Cassava (Manihot esculenta Crantz) is an important tropical tuber crop around the world. Cassava bacterial blight, caused by Xanthomonas phaseoli pv. manihotis, is a key disease that influences cassava production worldwide. Between 2008 and 2020, 50 X. phaseoli pv. manihotis strains were isolated from diseased plant samples or acquired from China, Uganda, Cambodia, Colombia, Malaysia, and Micronesia. Using multilocus sequence analysis, the genetic diversity of X. phaseoli pv. manihotis strains was evaluated. A neighbor-joining phylogenetic dendrogram was constructed based on partial sequences of five housekeeping genes (atpD-dnaK-gyrB-efp-rpoD). The strains clustered into three groups whose clusters were consistent with atpD and RpoD gene sequences. Group I contained 46 strains from China, Uganda, Cambodia, and Micronesia, and the other two groups were comprised of strains from Colombia and Malaysia, respectively. The resistance of all these strains to copper ion (Cu2+) was determined, the minimal inhibitory concentration was between 1.3 and 1.7 mM, and there was no significant difference between strains from different geographic region. During genome annotation of the X. phaseoli pv. manihotis strain CHN01, homologous gene clusters of copLAB and xmeRSA were identified. The predicted amino acid sequences of two gene clusters were highly homologous with the copper-resistant protein from Xanthomonas strains. CopLAB and xmeRSA were amplified from all these strains, suggesting that the regulation of copper resistance is associated with two distinct metabolic pathways. CopLAB and xmeRSA were highly conserved among strains from different geographic regions, possibly associated with other conserved function.

17.
New Phytol ; 238(4): 1593-1604, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764921

RESUMEN

Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.


Asunto(s)
Oryza , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Xanthomonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Transporte Biológico , Enfermedades de las Plantas/microbiología , Oryza/genética
18.
Phytopathology ; 113(11): 2062-2072, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37551962

RESUMEN

Xanthomonas translucens contains a group of bacterial pathogens that are closely related and have been divided into several pathovars based on their host range. X. translucens pv. undulosa (Xtu) and X. translucens pv. translucens (Xtt) are two important pathovars that cause bacterial leaf streak disease on wheat and barley, respectively. In this study, DNA markers were developed to differentiate Xtu and Xtt and were then used to characterize a collection of X. translucens strains with diverse origins, followed by confirmation and characterization with pathogenicity tests and multilocus sequence analysis/typing (MLSA/MLST). We first developed cleaved amplified polymorphic sequence markers based on the single-nucleotide polymorphisms within a cereal pathovar-specific DNA sequence. In addition, two Xtt-specific markers, designated Xtt-XopM and Xtt-SP1, were developed from comparative genomics among the sequenced Xtt/Xtu genomes. Using the developed markers, a collection of X. translucens strains were successfully identified as Xtu or Xtt. Pathogenicity tests on wheat and barley plants and MLSA of four housekeeping genes validated the pathovar assignation of those strains. Furthermore, MLSA revealed distinct subclades within both Xtu and Xtt groups. Seven and three sequence types were identified from MLST for Xtu and Xtt strains, respectively. The establishment of efficient Xtt/Xtu differentiation methods and characterization of those strains will be useful in studying disease epidemiology and host-pathogen interactions and breeding programs when screening for sources of resistance for these two important bacterial pathogens.


Asunto(s)
Hordeum , Xanthomonas , Tipificación de Secuencias Multilocus , Grano Comestible/genética , Marcadores Genéticos/genética , Virulencia , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Hordeum/microbiología , Triticum/microbiología
19.
Phytopathology ; 113(8): 1387-1393, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081724

RESUMEN

Strains of Xanthomonas citri pv. malvacearum cause bacterial blight of cotton, a potentially serious threat to cotton production worldwide, including in sub-Saharan countries. Development of disease symptoms, such as water soaking, has been linked to the activity of a class of type 3 effectors, called transcription activator-like (TAL) effectors, which induce susceptibility genes in the host's cells. To gain further insight into the global diversity of the pathogen, to elucidate their repertoires of TAL effector genes, and to better understand the evolution of these genes in the cotton-pathogenic xanthomonads, we sequenced the genomes of three African strains of X. citri pv. malvacearum using nanopore technology. We show that the cotton-pathogenic pathovar of X. citri is a monophyletic lineage containing at least three distinct genetic subclades, which appear to be mirrored by their repertoires of TAL effectors. We observed an atypical level of TAL effector gene pseudogenization, which might be related to resistance genes that are deployed to control the disease. Our work thus contributes to a better understanding of the conservation and importance of TAL effectors in the interaction with the host plant, which can inform strategies for improving resistance against bacterial blight in cotton.

20.
Phytopathology ; 113(6): 975-984, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36515656

RESUMEN

Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.


Asunto(s)
Enfermedades de las Plantas , Xanthomonas , Fitomejoramiento , Xanthomonas/fisiología , Secuenciación Completa del Genoma , Brotes de Enfermedades , Plantas/genética , Genoma Bacteriano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA