Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Appl Microbiol ; 133(2): 232-240, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35429105

RESUMEN

AIMS: The DNA marker HF183 is a partial 16S rRNA gene sequence highly specific to human-associated Bacteroides including Bacteroides dorei. While HF183 is used to assess human faecal contamination in aquatic environments worldwide, little is known about the existence of HF183 and B. dorei in human microbiomes outside of the human gastrointestinal tract and faeces. METHODS AND RESULTS: Previously published human skin and urine microbiome data sets from five independent human body skin studies, the Human Microbiome Project (HMP) and three independent human urine studies were analysed. The HF183 gene sequence was detected in all skin data sets, with the ratios of positive samples ranging from 0.5% to 36.3%. Popliteal fossa (knee), volar forearm and inguinal (groin) creases were identified as hot spots. HF183 was detected in two of three urine data sets, with ratios of positive samples ranging from 0% to 37.5%. All HF183-containing sequences from these data sets were classified as associated with B. dorei. CONCLUSIONS: HF183 is widespread on human skin and present in urine. SIGNIFICANCE AND IMPACT OF STUDY: Skin and urine microbiomes could be sources of HF183 to environmental waters. Such non-faecal sources of HF183 might explain low concentrations of HF183 in recreational waters when swimmers are present.


Asunto(s)
Aguas del Alcantarillado , Microbiología del Agua , Monitoreo del Ambiente/métodos , Heces , Marcadores Genéticos , Humanos , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética
2.
Anaerobe ; 75: 102544, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35247588

RESUMEN

Phocaeicola (Bacteroides) dorei is a Gram-negative anaerobic bacillus that is rarely isolated from human specimens. Its accurate identification can be hampered by its close taxonomic relationship with Bacteroides vulgatus. We report on two patients with bacteremia due to P. (B.) dorei, which was initially identified as B. vulgatus by MALDI-TOF MS.


Asunto(s)
Bacteriemia , Bacteroides , Bacteriemia/diagnóstico , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
BMC Infect Dis ; 21(1): 625, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193073

RESUMEN

BACKGROUND: Bacteroides dorei is an anaerobic gram-negative bacterium first described in 2006. Because of the high similarity in mass spectra between B. dorei and Bacteroides vulgatus, discriminating between these species is arduous in clinical practice. In recent decades, 16S rRNA gene sequencing has been a complementary method for distinguishing taxonomically close bacteria, including B. dorei and B. vulgatus, at the genus and species levels. Consequently, B. dorei has been shown to contribute to some diseases, including type 1 autoimmune diabetes mellitus and atherosclerotic diseases. However, there are no reports on invasive infectious diseases caused by B. dorei. This report describes the first case of direct invasion and colonisation of human tissue by B. dorei, thus providing a warning regarding the previously proposed application of B. dorei as a live biotherapeutic for atherosclerotic diseases. CASE PRESENTATION: A 78-year-old Japanese man complained of intermittent chest/back pain and was diagnosed with a mycotic thoracic aortic aneurysm by enhanced computed tomography on admission. Despite strict blood pressure control and empirical antibiotic therapy, the patient's condition worsened. To prevent aneurysmal rupture and eliminate infectious foci, the patient underwent surgical treatment. The resected specimen was subjected to tissue culture and 16S rRNA gene sequencing analysis to identify pathogenic bacteria. A few days after the surgery, culture and sequencing results revealed that the pathogen was B. dorei/B. vulgatus and B. dorei, respectively. The patient was successfully treated with appropriate antibacterial therapy and after improvement, was transferred to another hospital for rehabilitation on postoperative day 34. There was no recurrence of infection or aneurysm after the patient transfer. CONCLUSIONS: This report describes the first case of invasive infectious disease caused by B. dorei, casting a shadow over its utilisation as a probiotic for atherosclerotic diseases.


Asunto(s)
Aneurisma Infectado/microbiología , Aneurisma de la Aorta/microbiología , Infecciones por Bacteroides/diagnóstico , Bacteroides/aislamiento & purificación , Anciano , Aneurisma Infectado/cirugía , Aneurisma de la Aorta/cirugía , Humanos , Japón/epidemiología , Masculino , ARN Ribosómico 16S , Análisis de Secuencia de ARN
4.
Circulation ; 138(22): 2486-2498, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30571343

RESUMEN

BACKGROUND: It is increasingly recognized that gut microbiota play a pivotal role in the development of atherosclerotic cardiovascular disease. Previously, we have reported that the abundance of genus Bacteroides is lower in patients with coronary artery disease (CAD) than in patients without CAD with coronary risk factors or in healthy volunteers. However, it remains unclear which and how specific gut bacteria contribute to the progression of atherosclerosis. METHODS: We recruited patients with CAD patients and controls without CAD with coronary risk factors. We then compared gut microbial composition using 16S ribosomal RNA gene sequencing in fecal samples to detect species with differential abundance between 2 groups. Subsequently, we used atherosclerosis-prone mice to study the mechanisms underlying the relationship between such species and atherosclerosis. RESULTS: Human fecal 16S ribosomal RNA gene sequencing revealed a significantly lower abundance of Bacteroides vulgatus and Bacteroides dorei in patients with CAD. This significant differential abundance was confirmed by quantitative polymerase chain reaction. Gavage with live B. vulgatus and B. dorei attenuated atherosclerotic lesion formation in atherosclerosis-prone mice, markedly ameliorating endotoxemia followed by decreasing gut microbial lipopolysaccharide production, effectively suppressing proinflammatory immune responses. Furthermore, fecal lipopolysaccharide levels in patients with CAD were significantly higher and negatively correlated with the abundance of B. vulgatus and B. dorei. CONCLUSIONS: Our translational research findings identify a previously unknown link between specific gut bacteria and atherosclerosis. Treatment with live B. vulgatus and B. dorei may help prevent CAD. CLINICAL TRIAL REGISTRATION: URL: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000018051 . Unique identifier: UMIN000015703.


Asunto(s)
Aterosclerosis/patología , Bacteroides/aislamiento & purificación , Microbioma Gastrointestinal , Lipopolisacáridos/sangre , Anciano , Animales , Aterosclerosis/epidemiología , Aterosclerosis/inmunología , Aterosclerosis/veterinaria , Bacteroides/genética , Heces/microbiología , Femenino , Humanos , Inmunidad Mucosa , Intestinos/inmunología , Lipopolisacáridos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Factores de Riesgo , Análisis de Secuencia de ARN , Uniones Estrechas/metabolismo , Uniones Estrechas/microbiología
5.
Anaerobe ; 47: 51-56, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28414107

RESUMEN

This study used a recently developed EUCAST disc diffusion method to measure the susceptibility of 741 B. fragilis group isolates to six antibiotics. Isolates nonsusceptible to imipenem and metronidazole by the disc method were further investigated by E-test. Species identification was obtained by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR assays and 16S rRNA sequencing. The most common species were B. fragilis (n = 424, including 81 division II and 343 division I isolates), B. thetaiotaomicron (n = 111), B. ovatus (n = 53) and B. vulgatus (n = 46). Overall, metronidazole following by imipenem and amoxicillin-clavulanate are the most active agents with over 90% of all the isolates being susceptible at the tentative disc breakpoints. Susceptibility rates for moxifloxacin (69.5%), piperacillin-tazobactam (58.2%) and clindamycin (37.2%) were much lower. Metronidazole is the only agent active against >90% of B. fragilis, non-fragilis Bacteroides and Parabacteroides isolates. With the exception of B. fragilis division II, imipenem was active against 88.0%-98.3% of isolates of the other species. Susceptibility rates for clindamycin (14.4%-54.3%) and moxifloxacin (33.3%-80.6%) were low across all species and many isolates had no inhibition zone around the discs. E-test testing confirmed 8.2% (61/741) and 1.6% (12/741) isolates as nonsusceptible to imipenem and metronidazole, respectively with B. fragilis and B. thetaoiotaomicron accounting for a large share of the observed resistance to both agents. Two imipenem-resistant and one metronidazole-resistant B. dorei were misidentified as B. vulgatus by MALDI-TOF MS. These data highlights the importance anaerobic susceptibility testing in clinical laboratories to guide therapy.


Asunto(s)
Antibacterianos/farmacología , Bacteroides/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Bacteroides/clasificación , Bacteroides/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Farmacorresistencia Bacteriana , Hong Kong , Humanos , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Front Microbiol ; 13: 834776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432282

RESUMEN

Obesity is the leading cause of health-related diseases in the United States and World. Previously, we reported that obesity can change gut microbiota using the Zucker rat model. Metformin is an oral anti-hyperglycemic agent approved by the FDA to treat type 2 diabetes (T2D) in adults and children older than 10 years of age. The correlation of short-term metformin treatment and specific alterations to the gut microbiota in obese models is less known. Short-term metformin has been shown to reduce liver steatosis. Here we investigate the effects of short-term metformin treatment on population of gut microbiota profile in an obese rat model. Five week old obese (n = 12) female Zucker rats after 1 week of acclimation, received AIN-93 G diet for 8 weeks and then rats were randomly assigned into two groups (6 rats/group): (1) obese without metformin (ObC), or (2) obese with metformin (ObMet). Metformin was mixed with AIN-93G diet at 1,000 mg/kg of diet. Rats were weighed twice per week. All rats were sacrificed at the end of metformin treatment at 10 weeks and fecal samples were collected and kept at -80°C. Total microbial DNA was collected directly from the fecal samples used for shotgun-metagenomics sequencing and subsequently analyzed using MetaPlAn and HUMAnN. After stringent data filtering and quality control we found significant differences (p = 0.0007) in beta diversity (Aitchison distances) between the ObC vs. ObMet groups. Supervised and unsupervised analysis of the log-ratios Bacteroides dorei and B. massiliensis vs. all other Bacteroides spp., revealed that B. dorei and B. massiliensis were enriched in the ObMet group, while the remaining Bacteroides spp. where enriched in the ObC group (p = 0.002). The contributional diversity of pathways is also significantly associated by treatment group (p = 0.008). In summary, in the obese Zucker rat model, short-term metformin treatment changes the gut microbiota profile, particularly altering the composition Bacteroides spp. between ObC and ObMet.

7.
Int J Biol Macromol ; 187: 664-674, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34339781

RESUMEN

Symbiotic bacteria, including members of the Bacteroides genus, are known to digest dietary fibers in the gastrointestinal tract. The metabolism of complex carbohydrates is restricted to a specified subset of species and is likely orchestrated by polysaccharide utilization loci (PULs) in these microorganisms. ß-Mannans are plant cell wall polysaccharides that are commonly found in human nutrients. Here, we report the structural basis of a PUL cluster, BdPUL12, which controls ß-mannan-like glycan catabolism in Bacteroides dorei. Detailed biochemical characterization and targeted gene disruption studies demonstrated that a key glycoside hydrolase, BdP12GH26, performs the initial attack on galactomannan or glucomannan likely via an endo-acting mode, generating mannooligosaccharides and mannose. Importantly, coculture assays showed that the B. dorei promoted the proliferation of Lactobacillus helveticus and Bifidobacterium adolescentis, likely by sharing mannooligosaccharides and mannose with these gut probiotics. Our findings provide new insights into carbohydrate metabolism in gut-inhabiting bacteria and lay a foundation for novel probiotic development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Galactosa/análogos & derivados , Mananos/metabolismo , Manosa/metabolismo , Manosidasas/metabolismo , Oligosacáridos/metabolismo , Probióticos , Proteínas Bacterianas/genética , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bifidobacterium adolescentis/crecimiento & desarrollo , Bifidobacterium adolescentis/metabolismo , Galactosa/metabolismo , Microbioma Gastrointestinal , Hidrólisis , Lactobacillus helveticus/crecimiento & desarrollo , Lactobacillus helveticus/metabolismo , Manosidasas/genética , Simbiosis
8.
Microorganisms ; 9(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34683463

RESUMEN

The human gut microbiome is currently recognized to play a vital role in human biology and development, with diet as a major modulator. Therefore, novel indigestible polysaccharides that confer a health benefit upon their fermentation by the microbiome are under investigation. Based on the recently demonstrated prebiotic potential of a carrot-derived pectin extract enriched for rhamnogalacturonan I (cRG-I), the current study aimed to assess the impact of cRG-I upon repeated administration using the M-SHIME technology (3 weeks at 3g cRG-I/d). Consistent effects across four simulated adult donors included enhanced levels of acetate (+21.1 mM), propionate (+17.6 mM), and to a lesser extent butyrate (+4.1 mM), coinciding with a marked increase of OTUs related to Bacteroides dorei and Prevotella species with versatile enzymatic potential likely allowing them to serve as primary degraders of cRG-I. These Bacteroidetes members are able to produce succinate, explaining the consistent increase of an OTU related to the succinate-converting Phascolarctobacterium faecium (+0.47 log10(cells/mL)). While the Bifidobacteriaceae family remained unaffected, a specific OTU related to Bifidobacterium longum increased significantly upon cRG-I treatment (+1.32 log10(cells/mL)). Additional monoculture experiments suggested that Bifidobacterium species are unable to ferment cRG-I structures as such and that B. longum probably feeds on arabinan and galactan side chains of cRG-I, released by aforementioned Bacteroidetes members. Overall, this study confirms the prebiotic potential of cRG-I and additionally highlights the marked consistency of the microbial changes observed across simulated subjects, suggesting the involvement of a specialized consortium in cRG-I fermentation by the human gut microbiome.

9.
Biochimie ; 163: 50-57, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31078584

RESUMEN

Acylpeptidyl-oligopeptidase (AOP), which has been recently identified as a novel enzyme in a periodontopathic bacterium, Porphyromonas gingivalis, removes di- and tri-peptides from N-terminally acylated polypeptides, with a preference for hydrophobic P1-position amino acid residues. To validate enzymatic properties of AOP, characteristics of two bacterial orthologues from Bacteroides dorei (BdAOP), a Gram-negative intestinal rod, and Lysinibacillus sphaericus (LsAOP), a Gram-positive soil rod, were determined. Like P. gingivalis AOP (PgAOP), two orthologues more efficiently hydrolyzed N-terminal acylated peptidyl substrates than non-acylated ones. Optimal pH was shifted from 7.0 to 8.9 for N-acylated to 8.5-9.5 for non-acylated substrates, indicating preference for non-charged hydrophobic N-terminal residues. Hydrophobic P1- and P2-position preferences were common in the three AOPs, although PgAOP preferred Leu and the others preferred Phe at the P1 position. In vitro mutagenesis demonstrated that Phe647 in PgAOP was responsible for the P1 Leu preference. In addition, bacterial AOPs commonly liberated acetyl-Ser1-Tyr2 from α-melanocyte-stimulating hormone. Taken together, although these three bacterial AOPs exhibited some variations in biochemical properties, the present study demonstrated the existence of a group of exopeptidases that preferentially liberates mainly dipeptides from N-terminally acylated polypeptides with a preference for hydrophobic P1 and P2-position residues.


Asunto(s)
Péptido Hidrolasas/metabolismo , Porphyromonas gingivalis/enzimología , Bacillaceae/enzimología , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Hidrólisis , Cinética , Péptido Hidrolasas/efectos de los fármacos , Especificidad por Sustrato
10.
Front Immunol ; 10: 2623, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781116

RESUMEN

Type 1 diabetes (T1D) is a chronic autoimmune disease that results from destruction of pancreatic ß-cells. T1D subjects were recently shown to harbor distinct intestinal microbiome profiles. Based on these findings, the role of gut bacteria in T1D is being intensively investigated. The mechanism connecting intestinal microbial homeostasis with the development of T1D is unknown. Specific gut bacteria such as Bacteroides dorei (BD) and Ruminococcus gnavus (RG) show markedly increased abundance prior to the development of autoimmunity. One hypothesis is that these bacteria might traverse the damaged gut barrier, and their constituents elicit a response from human islets that causes metabolic abnormalities and inflammation. We have tested this hypothesis by exposing human islets to BD and RG in vitro, after which RNA-Seq analysis was performed. The bacteria altered expression of many islet genes. The commonly upregulated genes by these bacteria were cytokines, chemokines and enzymes, suggesting a significant effect of gut bacteria on islet antimicrobial and biosynthetic pathways. Additionally, each bacteria displayed a unique set of differentially expressed genes (DEGs). Ingenuity pathway analysis of DEGs revealed that top activated pathways and diseases included TREM1 signaling and inflammatory response, illustrating the ability of bacteria to induce islet inflammation. The increased levels of selected factors were confirmed using immunoblotting and ELISA methods. Our data demonstrate that islets produce a complex anti-bacterial response. The response includes both symbiotic and pathogenic aspects. Both oxidative damage and leukocyte recruitment factors were prominent, which could induce beta cell damage and subsequent autoimmunity.


Asunto(s)
Bacteroides , Clostridiales , Diabetes Mellitus Tipo 1/microbiología , Islotes Pancreáticos/inmunología , Adulto , Bacteroides/genética , Clostridiales/genética , Citocinas/inmunología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Microbioma Gastrointestinal , Regulación Bacteriana de la Expresión Génica , Humanos , Islotes Pancreáticos/microbiología , Persona de Mediana Edad , RNA-Seq , Transcriptoma , Adulto Joven
11.
FEMS Microbiol Lett ; 365(4)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29319802

RESUMEN

Polyamine concentrations in the intestine are regulated by their biosynthesis by hundreds of gut microbial species and these polyamines are involved in host health and disease. However, polyamine biosynthesis has not been sufficiently analyzed in major members of the human gut microbiota, possibly owing to a lack of gene manipulation systems. In this study, we successfully performed markerless gene deletion in Bacteroides dorei, one of the major members of the human gut microbiota. The combination of a thymidine kinase gene (tdk) deletion mutant and a counter-selection marker tdk, which has been applied in other Bacteroides species, was used for the markerless gene deletion. Deletion of tdk in B. dorei caused 5-fluoro-2΄-deoxyuridine resistance, suggesting the utility of B. dorei Δtdk as the host for future markerless gene deletions. Compared to parental strains, an arginine decarboxylase gene (speA) deletion mutant generated in this system showed a severe growth defect and decreased concentration of spermidine in the cells and culture supernatant. Collectively, our results indicate the accessibility of gene deletion and the important role of speA in polyamine biosynthesis in B. dorei.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Eliminación de Gen , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Poliaminas/metabolismo , Espermidina/metabolismo
12.
Front Microbiol ; 5: 678, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25540641

RESUMEN

The incidence of the autoimmune disease, type 1 diabetes (T1D), has increased dramatically over the last half century in many developed countries and is particularly high in Finland and other Nordic countries. Along with genetic predisposition, environmental factors are thought to play a critical role in this increase. As with other autoimmune diseases, the gut microbiome is thought to play a potential role in controlling progression to T1D in children with high genetic risk, but we know little about how the gut microbiome develops in children with high genetic risk for T1D. In this study, the early development of the gut microbiomes of 76 children at high genetic risk for T1D was determined using high-throughput 16S rRNA gene sequencing. Stool samples from children born in the same hospital in Turku, Finland were collected at monthly intervals beginning at 4-6 months after birth until 2.2 years of age. Of those 76 children, 29 seroconverted to T1D-related autoimmunity (cases) including 22 who later developed T1D, the remaining 47 subjects remained healthy (controls). While several significant compositional differences in low abundant species prior to seroconversion were found, one highly abundant group composed of two closely related species, Bacteroides dorei and Bacteroides vulgatus, was significantly higher in cases compared to controls prior to seroconversion. Metagenomic sequencing of samples high in the abundance of the B. dorei/vulgatus group before seroconversion, as well as longer 16S rRNA sequencing identified this group as Bacteroides dorei. The abundance of B. dorei peaked at 7.6 months in cases, over 8 months prior to the appearance of the first islet autoantibody, suggesting that early changes in the microbiome may be useful for predicting T1D autoimmunity in genetically susceptible infants. The cause of increased B. dorei abundance in cases is not known but its timing appears to coincide with the introduction of solid food.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA