Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(37): e2308762120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669394

RESUMEN

The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) are involved in the regulation of defensive behavior under threat, but their engagement in flexible behavior shifts remains unclear. Here, we report the oscillatory activities of mPFC-BLA circuit in reaction to a naturalistic threat, created by a predatory robot in mice. Specifically, we found dynamic frequency tuning among two different theta rhythms (~5 or ~10 Hz) was accompanied by agile changes of two different defensive behaviors (freeze-or-flight). By analyzing flight trajectories, we also found that high beta (~30 Hz) is engaged in the top-down process for goal-directed flights and accompanied by a reduction in fast gamma (60 to 120 Hz, peak near 70 Hz). The elevated beta nested the fast gamma activity by its phase more strongly. Our results suggest that the mPFC-BLA circuit has a potential role in oscillatory gear shifting allowing flexible information routing for behavior switches.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Animales , Ratones , Corteza Prefrontal , Citoplasma , Rayos gamma
2.
Cell Mol Life Sci ; 78(10): 4805-4819, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33837450

RESUMEN

During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.


Asunto(s)
Drosophila melanogaster/fisiología , Motivación/fisiología , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Humanos
3.
Curr Biol ; 32(2): 398-411.e4, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34906353

RESUMEN

Animals detect and discriminate countless environmental chemicals for their well-being and survival. Although a single chemical can trigger opposing behavioral responses depending on its concentration, the mechanisms underlying such a concentration-dependent switching remain poorly understood. Here, we show that C. elegans exhibits either attraction or avoidance of the bacteria-derived volatile chemical dimethyl trisulfide (DMTS) depending on its concentration. This behavioral switching is mediated by two different types of chemosensory neurons, both of which express the DMTS-sensitive seven-transmembrane G protein-coupled receptor (GPCR) SRI-14. These two sensory neurons share downstream interneurons that process and translate DMTS signals via distinct glutamate receptors to generate the appropriate behavioral outcome. Thus, our results present one mechanism by which an animal connects two distinct types of chemosensory neurons detecting a common ligand to alternate downstream circuitry, thus efficiently switching between specific behavioral programs based on ligand concentration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Receptores Odorantes/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Ligandos , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales
4.
Neuron ; 100(6): 1414-1428.e10, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30392795

RESUMEN

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine also acts directly on AVK via an inhibitory dopamine receptor. Both AVK and DVA couple to head motoneurons by electrical and chemical synapses to orchestrate either dispersal or dwelling behavior, thus integrating environmental and proprioceptive signals. Dopaminergic regulation of food-related behavior, via similar neuropeptides, may be conserved in mammals.


Asunto(s)
Dopamina/farmacología , Alimentos , Locomoción/efectos de los fármacos , Vías Nerviosas/fisiología , Neuropéptidos/farmacología , Sensación/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Vías Nerviosas/efectos de los fármacos , Neuropéptidos/metabolismo , Optogenética , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/fisiología , Células Receptoras Sensoriales/fisiología
5.
Ecol Evol ; 6(22): 8243-8255, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27878092

RESUMEN

Animal movement research relies on biotelemetry, and telemetry-based locations are increasingly augmented with ancillary information. This presents an underutilized opportunity to enhance movement process models. Given tags designed to record specific behaviors, efforts are increasing to update movement models beyond reliance solely upon horizontal movement information to improve inference of space use and activity budgets. We present two state-space models adapted to incorporate ancillary data to inform three discrete movement states: directed, resident, and an activity state. These were developed for two case studies: (1) a "haulout" model for Weddell seals, and (2) an "activity" model for Antarctic fur seals which intersperse periods of diving activity and inactivity. The methodology is easily implementable with any ancillary data that can be expressed as a proportion (or binary) indicator. A comparison of the models augmented with ancillary information and unaugmented models confirmed that many behavioral states appeared mischaracterized in the latter. Important changes in subsequent activity budgets occurred. Haulout accounted for 0.17 of the overall Weddell seal time budget, with the estimated proportion of time spent in a resident state reduced from a posterior median of 0.69 (0.65-0.73; 95% HPDI) to 0.54 (0.50-0.58 HPDI). The drop was more dramatic in the Antarctic fur seal case, from 0.57 (0.52-0.63 HPDI) to 0.22 (0.20-0.25 HPDI), with 0.35 (0.31-0.39 HPDI) of time spent in the inactive (nondiving) state. These findings reinforce previously raised contentions about the drawbacks of behavioral states inferred solely from horizontal movements. Our findings have implications for assessing habitat requirements; estimating energetics and consumption; and management efforts such as mitigating fisheries interactions. Combining multiple sources of information within integrated frameworks should improve inference of relationships between movement decisions and fitness, the interplay between resource and habitat dependencies, and their changes at the population and landscape level.

6.
Neurosci Biobehav Rev ; 37(8): 1860-74, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23608127

RESUMEN

Maternal behavior is expressed in different modalities, physiological conditions, and contexts. It is the result of a highly motivated brain, that allows the female to flexibily adapt her caring activities to different situations and social demands. To understand how mothers coordinate maternal and other motivated behaviors we discuss the limitations of current theoretical approaches to study maternal motivation (e.g. distinction between appetitive and consummatory behaviors), and propose a different approach (i.e. motorically active vs. passive motivations) and a distinction between maternal motivated state and maternal motivated behaviors. We review the evidence supporting dopamine mediation of maternal motivation and describe how different phases of the dopaminergic response - basal, tonic, and phasic release in the nucleus accumbens - relate to increased salience, invigorating behavior, and behavioral switching. The existing and new experimental paradigms to investigate maternal motivation, and its coexpression and coordination with other social or non-social motivations are also analyzed. An example of how specificity of motivational systems (e.g. maternal and sexual behavior at postpartum estrus) could be processed at the neural level is also provided. This revision offers new theoretical and experimental approaches to address the fundamental question of how mothers flexibly adapt and coordinate the different components of maternal behavior with other motivated behaviors, also critical for the survival of the species.


Asunto(s)
Dopamina/fisiología , Conducta Materna/fisiología , Motivación/fisiología , Núcleo Accumbens/fisiología , Animales , Femenino , Humanos , Mamíferos , Conducta Materna/psicología
7.
Front Behav Neurosci ; 4: 30, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20589095

RESUMEN

Animals show periods of quiescence interspersed with periods of motor activity. In a number of invertebrate and vertebrate systems, quiescence is achieved by active suppression of motor behavior is due to tonic inhibition induced by sensory input or changes in internal state. Removal of this inhibition (disinhibition) has the converse effect tending to increase the level of motor activity. We show that tonic inhibition and disinhibition can have a variety of roles. It can simply switch off specific unwanted motor behaviors, or modulate the occurrence of a motor response, a type of 'threshold' controlling function, or be involved in the selection of a particular motor program by inhibiting 'competing' motor mechanisms that would otherwise interfere with the carrying out of a desired movement. A suggested general function for tonic inhibition is to prevent unnecessary non-goal directed motor activity that would be energetically expensive. The reason why basic motor programs might be a particular target for tonic inhibition is that many of them involve central pattern generator circuits that are often spontaneously active and need to be actively suppressed for energy saving. Based on this hypothesis, tonic inhibition represents the default state for energy saving and motor programs are switched-on when required by removal of this inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA