Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Sci (Weinh) ; 11(31): e2404997, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888516

RESUMEN

The fabrication of environmentally benign, solvent-processed, efficient, organic photovoltaic sub-modules remains challenging due to the rapid aggregation of the current high performance non-fullerene acceptors (NFAs). In this regard, design of new NFAs capable of achieving optimal aggregation in large-area organic photovoltaic modules has not been realized. Here, an NFA named BTA-HD-Rh is synthesized with longer (hexyl-decyl) side chains that exhibit good solubility and optimal aggregation. Interestingly, integrating a minute amount of new NFA (BTA-HD-Rh) into the PM6:L8-BO system enables the improved solubility in halogen-free solvents (o-xylene:carbon disulfide (O-XY:CS2)) with controlled aggregation is found. Then solar sub-modules are fabricated at ambient condition (temperature at 25 ± 3 °C and humidity: 30-45%). Ultimately, the champion 55 cm2 sub-modules achieve exciting efficiency of >16% in O-XY:CS2 solvents, which is the highest PCE reported for sub-modules. Notably, the highest efficiency of BTA-HD-Rh doped PM6:L8-BO is very well correlated with high miscibility with low Flory-Huggins parameter (0.372), well-defined nanoscale morphology, and high charge transport. This study demonstrates that a careful choice of side chain engineering for an NFA offers fascinating features that control the overall aggregation of active layer, which results in superior sub-module performance with environmental-friendly solvents.

2.
J Biomed Mater Res A ; 111(11): 1692-1709, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37300320

RESUMEN

In this work, composite electrospun fibers containing innovative bioactive glass nanoparticles were produced and characterized. Poly(ε-caprolactone), benign solvents, and sol-gel B- and Cu-doped bioactive glass powders were used to fabricate fibrous scaffolds. The retention of bioactive glass nanoparticles in the polymer matrix, the electrospinnability of this novel solution and the obtained electrospun composites were extensively characterized. As a result, composite electrospun fibers characterized by biocompatibility, bioactivity, and exhibiting overall properties adequate for both hard and soft tissue engineering applications, have been produced. The addition of these bioactive glass nanoparticles was, indeed, able to impart bioactive properties to the fibers. Cell culture studies show promising results, demonstrating proliferation and growth of cells on the composite fibers. Wettability, degradation rate, and mechanical performance were also tested and are in line with previous results.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Poliésteres , Polímeros , Vidrio , Andamios del Tejido
3.
Biomed Mater ; 17(4)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35545079

RESUMEN

Electrospun fibers based on biodegradable polyanionic or polycationic biopolymers are highly beneficial for biomedical applications. In this work, electrospun nanofibers made from poly(epsilon caprolactone) (PCL), chitosan (CS) andκ-carrageenan (κ-C) were successfully fabricated using several mixtures of benign solvents containing formic acid and acetic acid. The addition ofκ-C improved the preparation procedure for the production of PCL/CS fibers by electrospinning. Moreover, a polymer mixture was selected to be stored at -20 °C for one month with the purpose to study the properties of the resulting fiber mat. The results indicated that fiber characteristics were not seriously compromised compared to the ones of those fabricated with the original solution, which represents an important reduction in produced waste. Thus, the interactions that occur between positively and negatively charged hydrophilic polysaccharides might induce higher stability to the linear aliphatic polyester in the polymer mixture. All fiber mats were morphologically, physico-chemically and mechanically characterized, showing average fiber diameters in the nano scale. A direct cell viability assay using ST-2 cells demonstrated cell proliferation after seven days of incubation for all prepared fiber mats, confirming their suitability as potential candidates for bone tissue engineering and wound healing applications.


Asunto(s)
Quitosano , Nanofibras , Carragenina , Quitosano/química , Nanofibras/química , Poliésteres/química , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
Bioact Mater ; 11: 230-239, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34977428

RESUMEN

Electrospun fibers of shape memory triethoxysilane-terminated poly(epsilon-caprolactone) (PCL-TES) loaded with bioactive glasses (BG) are here presented. Unloaded PCL-TES, as well as PCL/BG nanocomposite fibers, are also considered for comparison. It is proposed that hydrolysis and condensation reactions take place between triethoxysilane groups of the polymer and the silanol groups at the BG particle surface, thus generating additional crosslinking points with respect to those present in the PCL-TES system. The as-spun PCL-TES/BG fibers display excellent shape memory properties, in terms of shape fixity and shape recovery ratios, without the need of a thermal crosslinking treatment. BG particles confer in vitro bioactivity to PCL-based nanocomposite fibers and favor the precipitation of hydroxycarbonate apatite on the fiber surface. Preliminary cytocompatibility tests demonstrate that the addition of BG particles to PCL-based polymer does not inhibit ST-2 cell viability. This novel approach of using bioactive glasses not only for their biological properties, but also for the enhancement of shape memory properties of PCL-based polymers, widens the versatility and suitability of the obtained composite fibers for a huge portfolio of biomedical applications.

5.
Macromol Biosci ; 20(3): e1900355, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32022997

RESUMEN

Inducing the formation of new blood vessels (angiogenesis) is an essential requirement for successful tissue engineering. Approaches have been proposed to enhance angiogenesis using growth factors and other biomolecules; however, this approaches present drawbacks in terms of high cost and patient safety. Copper is known to effectively regulate angiogenesis and can offer a more cost-effective alternative than the direct use of growth factors. With this study, a strategy to incorporate copper in electrospun fibrous scaffolds with pro-angiogenic properties is presented. Polycaprolactone (PCL) and copper(II)-chitosan are electrospun using benign solvents. The morphological and physicochemical properties of the fiber mats are investigated through scanning electron microscopy (SEM), static contact angle measurements, energy dispersive X-ray, and Fourier-transform infrared spectroscopies. Scaffold stability in phosphate buffered saline at 37 °C is monitored over 1 week. A bone marrow stromal cell line (ST-2) is cultured for 7 days and its behavior is evaluated using SEM, fluorescence microscopy and a tetrazolium salt-based colorimetric assay. Results confirm that PCL/copper(II)-chitosan is suitable for electrospinning. The fiber mats are biocompatible and favor cell colonization and infiltration. Most notably, the angiogenic potential of PCL/copper(II)-chitosan blends is confirmed by a three-fold increase in VEGF secretion by ST-2 cells in the presence of copper(II)-chitosan.


Asunto(s)
Quitosano/química , Cobre/química , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Poliésteres/química , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Células Madre Mesenquimatosas/citología , Ratones
6.
Nanomaterials (Basel) ; 10(5)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438673

RESUMEN

Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely investigated for biomedical applications in combination with the electrospinning process. Among others, one advantage of this blend is its suitability to be processed with benign solvents for electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact, with the addition of PGS an increase in the average fiber diameter was observed, while in all the composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution, without changing significantly the average fiber diameter. Results confirmed that the blended fibers are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation test and acellular bioactivity test highlight the release of the BG particles from all composite fibers, relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak interface between the incorporated BG particles and the polymeric fibers, mechanical properties were not improved in the composite fibers. Promising results were obtained from preliminary biological tests for potential use of the developed mats for soft tissue engineering applications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-31001528

RESUMEN

The aim of this study is to demonstrate the feasibility of different functionalization methods for electrospun fibers developed using benign solvents. In particular three different approaches were investigated to achieve the functionalization of poly(epsilon caprolactone) (PCL) electrospun fibers with fibronectin. Protein surface entrapment, chemical functionalization and coaxial electrospinning were performed and compared. Moreover, bilayered scaffolds, with a top patterned and functionalized layer with fibronectin and a randomly oriented not functionalized layer were fabricated, demonstrating the versatility of the use of benign solvents for electrospinning also for the fabrication of complex graded structures. Besides the characterization of the morphology of the obtained scaffolds, ATR-FTIR and ToF-SIMS were used for the surface characterization of the functionalized fibers. Cell adhesion and proliferation were also investigated by using ST-2 cells. Positive results were obtained from all functionalized scaffolds and the most promising results were obtained with bilayered scaffolds, in terms of cells infiltration inside the fibrous structure.

8.
J Biomed Mater Res A ; 107(12): 2694-2705, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31390481

RESUMEN

From a structural perspective, an ideal scaffold ought to possess interconnected macro pores with sizes from 10 to 100 µm to facilitate cell infiltration and tissue formation, as well as similar topography to the natural extracellular matrix (ECM) which would have an impact on cell behavior such as cell adhesion and gene expression. For that purpose, here we developed a fabrication process to incorporate electrospun short fibers within freeze-dried scaffolds for tissue engineering applications. Briefly, PCL short fibers were first produced from electrospun fibers with ultrasonication method. They were then evenly dispersed in gelatin solution and freeze-dried to obtain fiber incorporated scaffolds. The resulting scaffolds exhibited hierarchical structure including major pores with sizes ranging from 50 to 150 µm and the short fibers dispersed in the thin walls of major pores, mimicking the fibrous feature of natural ECM. The short fibers were proven to modify the mechanical properties of scaffold and to facilitate cell adhesion and proliferation on the scaffold. As a promising scaffold for tissue engineering and regenerative medicine, the fiber incorporated scaffold may have further biomedical applications, in which the short fibers can act as drug release vehicles for growth factors or other biomolecules to promote vascularization.


Asunto(s)
Materiales Biomiméticos/química , Gelatina/química , Nanofibras/química , Poliésteres/química , Andamios del Tejido/química , Animales , Línea Celular , Matriz Extracelular/química , Liofilización , Ratones , Mioblastos/citología , Nanofibras/ultraestructura , Sonicación , Ingeniería de Tejidos
9.
Bioact Mater ; 3(1): 55-63, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29744442

RESUMEN

The use of bioactive glass (BG) particles as a filler for the development of composite electrospun fibers has already been widely reported and investigated. The novelty of the present research work is represented by the use of benign solvents (like acetic acid and formic acid) for electrospinning of composite fibers containing BG particles, by using a blend of PCL and chitosan. In this work, different BG particle sizes were investigated, namely nanosized and micron-sized. A preliminary investigation about the possible alteration of BG particles in the electrospinning solvents was performed using SEM analysis. The obtained composite fibers were investigated in terms of morphological, chemical and mechanical properties. An in vitro mineralization assay in simulated body fluid (SBF) was performed to investigate the capability of the composite electrospun fibers to induce the formation of hydroxycarbonate apatite (HCA).

10.
Polymers (Basel) ; 9(10)2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30965790

RESUMEN

The electrospinning technique is a versatile method for the production of fibrous scaffolds able to resemble the morphology of the native extra cellular matrix. In the present paper, electrospinning is used to fabricate novel SiO2 particles (type MCM-41) containing poly(epsilon-caprolactone) (PCL) fibers. The main aims of the present work are both the optimization of the particle synthesis and the fabrication of composite fibers, obtained using benign solvents, suitable as drug delivery systems and scaffolds for soft tissue engineering applications. The optimized synthesis and characterization of calcium-containing MCM-41 particles are reported. Homogeneous bead-free composite electrospun mats were obtained by using acetic acid and formic acid as solvents; neat PCL electrospun mats were used as control. Initially, an optimization of the electrospinning environmental parameters, like relative humidity, was performed. The obtained composite nanofibers were characterized from the morphological, chemical and mechanical points of view, the acellular bioactivity of the composite nanofibers was also investigated. Positive results were obtained in terms of mesoporous particle incorporation in the fibers and no significant differences in terms of average fiber diameter were detected between the neat and composite electrospun fibers. Even if the Ca-containing MCM-41 particles are bioactive, this property is not preserved in the composite fibers. In fact, during the bioactivity assessment, the particles were released confirming the potential application of the composite fibers as a drug delivery system. Preliminary in vitro tests with bone marrow stromal cells were performed to investigate cell adhesion on the fabricated composite mats, the positive obtained results confirmed the suitability of the composite fibers as scaffolds for soft tissue engineering.

11.
Nanomaterials (Basel) ; 6(4)2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28335202

RESUMEN

The electrospinning technique is widely used for the fabrication of micro- and nanofibrous structures. Recent studies have focused on the use of less toxic and harmful solvents (benign solvents) for electrospinning, even if those solvents usually require an accurate and longer process of optimization. The aim of the present work is to demonstrate the versatility of the use of benign solvents, like acetic acid and formic acid, for the fabrication of microfibrous and nanofibrous electrospun poly(epsilon-caprolactone) mats. The solvent systems were also shown to be suitable for the fabrication of electrospun structures with macroporosity, as well as for the fabrication of composite electrospun mats, fabricated by the addition of bioactive glass (45S5 composition) particles in the polymeric solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA