Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.635
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(2): 185-196, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812782

RESUMEN

Rationale: Benzene has been classified as carcinogenic to humans, but there is limited evidence linking benzene exposure to lung cancer. Objectives: We aimed to examine the relationship between occupational benzene exposure and lung cancer. Methods: Subjects from 14 case-control studies across Europe and Canada were pooled. We used a quantitative job-exposure matrix to estimate benzene exposure. Logistic regression models assessed lung cancer risk across different exposure indices. We adjusted for smoking and five main occupational lung carcinogens and stratified analyses by smoking status and lung cancer subtypes. Measurements and Main Results: Analyses included 28,048 subjects (12,329 cases, 15,719 control subjects). Lung cancer odds ratios ranged from 1.12 (95% confidence interval, 1.03-1.22) to 1.32 (95% confidence interval, 1.18-1.48) (Ptrend = 0.002) for groups with the lowest and highest cumulative occupational exposures, respectively, compared with unexposed subjects. We observed an increasing trend of lung cancer with longer duration of exposure (Ptrend < 0.001) and a decreasing trend with longer time since last exposure (Ptrend = 0.02). These effects were seen for all lung cancer subtypes, regardless of smoking status, and were not influenced by specific occupational groups, exposures, or studies. Conclusions: We found consistent and robust associations between different dimensions of occupational benzene exposure and lung cancer after adjusting for smoking and main occupational lung carcinogens. These associations were observed across different subgroups, including nonsmokers. Our findings support the hypothesis that occupational benzene exposure increases the risk of developing lung cancer. Consequently, there is a need to revisit published epidemiological and molecular data on the pulmonary carcinogenicity of benzene.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Benceno/toxicidad , Exposición Profesional/efectos adversos , Carcinógenos , Pulmón , Estudios de Casos y Controles , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/epidemiología
2.
Am J Respir Crit Care Med ; 209(8): 987-994, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128545

RESUMEN

Background: Benzene affects human health through environmental exposure in addition to occupational contact. However, few studies have examined the associations between long-term exposure to low concentrations of ambient benzene and mortality risks in nonoccupational settings.Methods: This prospective cohort study consists of 393,042 participants without stroke, myocardial infarction, or cancer at baseline from the UK Biobank. Annual average concentrations of benzene for each year during follow-up were measured using air dispersion models. The main outcomes were all-cause mortality and mortality from specific causes. Cox proportional-hazards models with time-varying exposure measurements were used to estimate the hazard ratios and 95% confidence intervals (CIs) for mortality risks. Restricted cubic spline models were used to estimate exposure-response relationships.Measurements and Main Results: With each interquartile range increase in the average annual concentration of benzene, the adjusted hazard ratios of mortality risk from all causes, cardiovascular disease, cancer, and respiratory disease were 1.26 (95% CI, 1.24-1.27), 1.24 (95% CI, 1.21-1.28), 1.27 (95% CI, 1.25-1.29), and 1.25 (95% CI, 1.20-1.30), respectively. The monotonically increasing exposure-response curves showed no threshold and plateau within the observed concentration range. Furthermore, the effect of benzene exposure on mortality persisted across different subgroups and was somewhat stronger in younger and White people (P for interaction < 0.05).Conclusions: Long-term exposure to low concentrations of ambient benzene significantly increases mortality risk in the general population. Ambient benzene represents a potential threat to public health, and further investigations are needed to support timely pollution regulation and health protection.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infarto del Miocardio , Neoplasias , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Benceno , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
3.
J Comput Chem ; 45(13): 1033-1045, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38216513

RESUMEN

The photophysical properties of a series of recently synthesized single benzene fluorophores were investigated using ensemble density functional theory calculations. The energetic stability of the ground and excited state species were counterposed against the aromaticity index derived from local vibrational modes. It was found that the large Stokes shift of the fluorophores (up to ca. 5800 cm - 1 ) originates from the effect of electron donating and electron withdrawing substituents rather than π -delocalization and related (anti-)aromaticity. On the basis of nonadiabatic molecular dynamics simulations, the absence of fluorescence from one of the regioisomers was explained by the occurrence of easily accessible S 1 /S 0 conical intersections below the vertical excitation energy level. It is demonstrated in the manuscript that the analysis of local mode force constants and the related aromaticity index represent a useful tool for the characterization of π -delocalization effects in π -conjugated compounds.

4.
Small ; 20(2): e2305606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670544

RESUMEN

Li-rich Mn-based cathodes have been regarded as promising cathodes for lithium-ion batteries because of their low cost of raw materials (compared with Ni-rich layer structure and LiCoO2 cathodes) and high energy density. However, for practical application, it needs to solve the great drawbacks of Li-rich Mn-based cathodes like capacity degradation and operating voltage decline. Herein, an effective method of surface modification by benzene diazonium salts to build a stable interface between the cathode materials and the electrolyte is proposed. The cathodes after modification exhibit excellent cycling performance (the retention of specific capacity is 84.2% after 350 cycles at the current density of 1 C), which is mainly attributed to the better stability of the structure and interface. This work provides a novel way to design the coating layer with benzene diazonium salts for enhancing the structural stability under high voltage condition during cycling.

5.
Chemistry ; 30(26): e202304334, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38388776

RESUMEN

Sensing of benzene vapor is a hot spot due to the volatile drastic carcinogen even at trace concentration. However, achieving convenient and rapid detection is still a challenge. As a sort of functional porous material, metal-organic frameworks (MOFs) have been developed as detection sensors by adsorbing benzene vapor and converting it into other signals (fluorescence intensity/wavelength, chemiresistive, weight or color, etc.). Supramolecular interaction between benzene molecules and the host framework, aperture size/shape and structural flexibility are influential factors in the performance of MOF-based sensors. Therefore, enhancing the host-guest interactions between the host framework and benzene molecules, or regulating the diffusion rate of benzene molecules by changing the aperture size/shape and flexibility of the host framework to enhance the detection signal are effective strategies for constructing MOF-based sensors. This concept highlights several types of MOF-based sensors for the detection of benzene vapor.

6.
Chemistry ; 30(26): e202400451, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38407368

RESUMEN

Beyond previously described carbo-naphthalene and carbo-biphenyl, a novel type of bis-carbo-benzenic molecules is envisaged from the stilbene parent. The synthesis, structure, spectroscopic and electrochemical properties of two such carbo-stilbenes are described at complementary experimental and computational DFT levels. In the selected targets, the bare skeletal carbo-mer of carbo-stilbene is decorated by 8 or 10 phenyl groups, 0 or 2 tert-butyl groups, and 2 n-octyl chains, the later substituents being introduced to compensate anticipated solubility issues. As in the parent stilbene series, isomers of the phenylated carbo-stilbenes are characterized. The cis- and trans-isomers are, however, formed in almost equal amounts and could not be separated by either chromatography or crystallization. Nevertheless, due to a slow interconversion at the NMR time scale (up to 55 °C) the 1H NMR signals of both isomers of the two carbo-stilbenes could be tentatively assigned. The calculated structure of the cis-isomer exhibits a helical shape, consistent with the observed magnetic shielding of phenyl p-CH nuclei residing inside the shielding cone of the facing C18 ring. The presence of the two isomers in solution also gives rise to quite broad UV-vis absorption spectra with main bands at ca 460, 560 and 710 nm, and a significant bathochromic shift for the decaphenylated carbo-stilbene vs the di-tert-butyl-octaphenylated counterpart. Square wave voltammograms do not show any resolution of the two isomers, giving a reversible reduction wave at -0.65 or -0.58 V/SCE, and an irreversible oxidation peak at 1.11 V/SCE, those values being classical for most carbo-benzene derivatives. Calculated NICS values (NICS(1)=-12.5±0.2 ppm) also indicate that the aromatic nature of the C18 rings is not markedly affected by the dialkynylbutatriene (DAB) connector between them.

7.
Chemistry ; 30(26): e202400059, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38409631

RESUMEN

Solvents influence the structure, aggregation and folding behaviors of solvatochromic compounds. Ultrasensitive solvent mediated chiroptical response is conducive to the fabrication of molecular platform for sensing and recognition, which however, remains great challenges in conceptual or applicable design. Here we report a cysteine-based single benzene chromophore system that shows ultrasensitivity to solvents. Compared to the ratiometrically responsive systems, the chiroptical activities could be triggered or inverted depending on the substituents of chiral entities with an ultralow solvent volume fraction (<1 vol %). One drop of dipolar solvents shall significantly induce the emergence or inversion of chiroptical signals in bulky phases. Based on the experimental and computational studies, the ultrasensitivity is contributed to the intimate interplay between solvents and chiral compounds that anchors the specific chiral conformation. It illustrates that structurally simple organic compounds without aggregation or folding behaviors possess pronounced solvatochiroptical properties, which sheds light on the next-generation of chiroptical sensors and switches.

8.
Chemistry ; 30(7): e202303194, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967312

RESUMEN

Developing peptide-based materials with controlled morphology is a critical theme of soft matter research. Herein, we report the formation of a novel, patterned cross-ß structure formed by self-assembled C3 -symmetric peptide amphiphiles based on diphenylalanine and benzene-1,3,5-tricarboxamide (BTA). The cross-ß motif is an abundant structural element in amyloid fibrils and aggregates of fibril-forming peptides, including diphenylalanine. The incorporation of topological constraints on one edge of the diphenylalanine fragment limits the number of ß-strands in ß-sheets and leads to the creation of an unconventional offset-patterned cross-ß structure consisting of short 3×2 parallel ß-sheets stabilized by phenylalanine zippers. In the reported assembly, two patterned cross-ß structures bind parallel arrays of BTA stacks in a superstructure within a single-molecule-thick nanoribbon. In addition to a threefold network of hydrogen bonds in the BTA stack, each molecule becomes simultaneously bound by hydrogen bonds from three ß-sheets and four phenylalanine zippers. The diffuse layer of alkyl chains with terminal polar groups prevents the nanoribbons from merging and stabilizes cross-ß-structure in water. Our results provide a simple approach to the incorporation of novel patterned cross-ß motifs into supramolecular superstructures and shed light on the general mechanism of ß-sheet formation in C3 -symmetric peptide amphiphiles.


Asunto(s)
Amiloide , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Amiloide/química , Conformación Proteica en Lámina beta , Fenilalanina
9.
Chemistry ; 30(4): e202302954, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37903731

RESUMEN

Herein a series of chiral BTI radical anions bearing different chiral substituents were efficiently prepared by chemical reduction. X-ray crystallography revealed finely-tuned packing and helix assemblies of the radicals by the size of chiral substituents in crystalline state. In accordance with the crystalline-state packing, the powder ESR spectra indicate that 4 a- ⋅CoCp2 + and 4 c- ⋅CoCp2 + π-dimers exhibit thermally excited triplet states arising from strong spin-spin interactions, while discrete 4 b- ⋅CoCp2 + shows a broad doublet-state signal reflecting weak spin-spin interactions. The interplay between the unpaired electron spin and chiral substituents was studied by UV-Vis-NIR spectra, electronic circular dichroism (ECD) and TD DFT calculations. Different NIR absorptions of the radicals attributing to isolated SOMO→LUMO+1 (~889 nm) transitions were recorded. The emergence of Cotton effects (CEs) at the NIR region for 4 c- ⋅CoCp2 + radical enantiomers suggest the interplay between chirality and unpaired electron spin. The origin of the different circularly polarized light absorptions regarding SOMO derived transitions (around 880 nm) was attributed to chiral substitutes regulated electric and magnetic transition dipole moments of the unpaired electron participated transition.

10.
Crit Rev Toxicol ; 54(4): 252-289, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38753561

RESUMEN

INTRODUCTION: Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS: We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS: Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION: We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.


Asunto(s)
Benceno , Formaldehído , Leucemia Mieloide Aguda , Humanos , Benceno/toxicidad , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/inducido químicamente , Formaldehído/toxicidad , Causalidad , Probabilidad , Medición de Riesgo , Exposición a Riesgos Ambientales , Factores de Riesgo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38180316

RESUMEN

A Gram-stain-negative strain, designated as D2M1T was isolated from xylene-degrading enrichment culture and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene sequence analysis revealed that strain D2M1T belongs to the genus Acidovorax, with the highest 16S rRNA gene similarity to Acidovorax delafieldii DSM 64T (99.93 %), followed by Acidovorax radicis DSM 23535T (98.77 %) and Acidovorax kalamii MTCC 12652T (98.76 %). The draft genome sequence of strain D2M1T is 5.49 Mb long, and the G+C content of the genome is 64.2 mol%. Orthologous average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain D2M1T and its closest relatives were below the threshold values for species demarcation confirming that strain D2M1T is distinctly separated from its closest relatives. The whole genome analysis of the strain revealed a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including an I.2.C-type catechol 2,3-dioxygenase (C23O) gene. The strain was able to degrade benzene and ethylbenzene as sole sources of carbon and energy under aerobic and microaerobic conditions. Cells were facultatively aerobic rods and motile with a single polar flagellum. The predominant fatty acids (>10 % of the total) of strain D2M1T were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major ubiquinone of strain D2M1T was Q8, while the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on polyphasic data, it is concluded that strain D2M1T represents a novel species of the genus Acidovorax, for which the name of Acidovorax benzenivorans sp. nov. is proposed. The type strain of the species is strain D2M1T (=DSM 115238T=NCAIM B.02679T).


Asunto(s)
Hidrocarburos Aromáticos , Xilenos , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
12.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691504

RESUMEN

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Asunto(s)
Benceno , Benceno/química , Compuestos Orgánicos/química , Oxidación-Reducción , Aerosoles , Volatilización , Contaminantes Atmosféricos , Modelos Teóricos
13.
J Am Acad Dermatol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777185

RESUMEN

The second part of this CME article discusses sunscreen regulation and safety considerations for humans and the environment. First, we provide an overview of the history of the United States Food and Drug Administration's regulation of sunscreen. Recent Food and Drug Administration studies clearly demonstrate that organic ultraviolet filters are systemically absorbed during routine sunscreen use, but to date there is no evidence of associated negative health effects. We also review the current evidence of sunscreen's association with vitamin D levels and frontal fibrosing alopecia, and recent concerns regarding benzene contamination. Finally, we review the possible environmental effects of ultraviolet filters, particularly coral bleaching. While climate change has been shown to be the primary driver of coral bleaching, laboratory-based studies suggest that organic ultraviolet filters represent an additional contributing factor, which led several localities to ban certain organic filters.

14.
J Fluoresc ; 34(1): 275-281, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37204533

RESUMEN

Herein a new azobenzene-substituted porphyrin molecule was synthesized, characterized and its optoelectronic properties were investigated by combining the high optoelectronic properties of porphyrin with the photosensitive properties of azobenzene. The carboxylic acid of azobenzene was covalently connected to -OH group of the porphyrin ring by using Steglich esterification. Molecular structure of the obtained azobenzene-porphyrin (8), was elucidated, by FTIR, 1 H and 13 C NMR and HRMS. After structural characterization absorption and emission, characteristics were determined in solvents that have different. And also, optical and fluorescence behaviors in the range of different acid pH with trans-cis photoisomerization behaviors were investigated in aqueous-THF solution in acid media.

15.
J Fluoresc ; 34(1): 425-436, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37284963

RESUMEN

A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 µg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.


Asunto(s)
Estrógenos , Carne , Estrógenos/análisis , Cromatografía Líquida de Alta Presión/métodos , Carne/análisis
16.
Mol Biol Rep ; 51(1): 309, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372835

RESUMEN

OBJECTIVE: The aim of this study is to examine and evaluate the impact of benzene poisoning on the relative content of the mitochondrial MT-ND1 gene and telomere length in individuals with occupational chronic benzene poisoning (CBP) compared to a control group. The study will analyze and gather data on the mitochondrial gene content and telomere length in cases of benzene poisoning, and investigate the relationship with blood routine parameters in order to contribute scientific experimental data for the prevention and treatment of CBP. METHOD: The case group comprised 30 individuals diagnosed with occupational chronic benzene poisoning, whereas the control group consisted of 60 healthy individuals who underwent physical examinations at our hospital concurrently. Blood routine indicators were detected and analyzed, and the PCR method was employed to measure changes in mitochondrial MT-ND1 content and telomere length. Subsequently, a comparison and analysis of the aforementioned indicators was conducted. RESULT: The case group exhibited a higher mitochondrial gene content (median 366.2, IQR 90.0 rate) compared to the control group (median 101.5, IQR 12.0 rate), with a statistically significant difference between the two groups (P < 0.05). Additionally, the case group demonstrated lower white blood cell levels (3.78 ± 1.387 × 109/L) compared to the control group (5.74 ± 1.41 × 109/L), with a significant difference between the two groups (P < 0.05). Furthermore, the case group displayed lower red blood cell levels (3.86 ± 0.65 × 1012/L) compared to the control group (4.89 ± 0.65 × 1012/L), with a significant difference between the two groups (P < 0.05). The hemoglobin level in the case group (113.33 ± 16.34 g/L) was lower than that in the control group (138.22 ± 13.22 g/L). There was a significant difference between the two groups (P < 0.05). Platelet levels in the case group (153.80 ± 58.31 × 109/L) is smaller than the control group (244.92 ± 51.99 × 109/L), there was a significant difference between the two groups (P < 0.05). The average telomere length of the normal control group was 1.451 ± 0.475 (rate); The mean telomere length of individuals in the case group diagnosed with benzene poisoning was determined to be 1.237 ± 0.457 (rate). No significant correlation was observed between telomere length and three blood routine parameters, namely white blood cells (WBC), hemoglobin (HB), and platelets (PLT). However, a significant correlation was found between telomere length and red blood cell count (RBC). Additionally, a negative correlation was observed between mitochondrial gene content and white blood cell count (r = - 0.314, P = 0.026), as well as between mitochondrial gene content and red blood cell count (r = - 0.226, P = 0.032). Furthermore, a negative correlation was identified between mitochondrial gene content and hemoglobin (r = - 0.314, P = 0.028), and platelets (r = - 0.445, P = 0.001). CONCLUSION: Individuals diagnosed with occupational chronic benzene poisoning exhibit a reduction in telomere length and an elevation in the relative content of the mitochondrial MT-ND1 gene. Moreover, a negative correlation is observed between the content of the mitochondrial MT-ND1 gene and four blood routine parameters, namely white blood cells (WBC), red blood cells (RBC), hemoglobin (HB), and platelets (PLT). Consequently, benzene exposure may potentially contribute to the onset of premature aging.


Asunto(s)
Benceno , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Variaciones en el Número de Copia de ADN/genética , Leucocitos , Hemoglobinas , Telómero/genética
17.
Bioorg Chem ; 144: 107113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232685

RESUMEN

Liver fibrosis is an abnormal wound-healing response to liver injuries. It can lead to liver cirrhosis, and even liver cancer and liver failure. There is a lack of treatment for liver fibrosis and it is of great importance to develop anti-fibrotic drugs. A pivotal event in the process of developing liver fibrosis is the activation of hepatic stellate cells (HSCs), in which the nuclear receptor Nur77 plays a crucial role. This study aimed to develop novel anti-fibrotic agents with Nur77 as the drug target by modifying the structure of THPN, a Nur77-binding and anti-melanoma compound. Specifically, a series of para-positioned 3,4,5-trisubstituted benzene ring compounds with long-chain backbone were generated and tested for anti-fibrotic activity. Among these compounds, compound A8 was with the most potent and Nur77-dependent inhibitory activity against TGF-ß1-induced activation of HSCs. In a crystal structure analysis, compound A8 bound Nur77 in a peg-in-hole mode as THPN did but adopted a different conformation that could interfere the Nur77 interaction with AKT, which was previous shown to be important for an anti-fibrotic activity. In a cell-based assay, compound A8 indeed impeded the interaction between Nur77 and AKT leading to the stabilization of Nur77 without the activation of AKT. In a mouse model, compound A8 effectively suppressed the activation of AKT signaling pathway and up-regulated the cellular level of Nur77 to attenuate the HSCs activation and ameliorate liver fibrosis with no significant toxic side effects. Collectively, this work demonstrated that Nur77-targeting compound A8 is a promising anti-fibrotic drug candidate.


Asunto(s)
Benceno , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Fibrosis , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo
18.
Environ Res ; 243: 117836, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065394

RESUMEN

Benzene is a commonly used industrial chemical that is a significant environmental pollutant. Occupational health specialists and industrial toxicologists are concerned with determining the exact amount of exposure to chemicals in the workplace. There are two main approaches to assess chemical exposure; air monitoring and biological monitoring. Air monitoring has limitations, which biological monitoring overcomes and could be used as a supplement to it. However, there are several factors that influence biological monitoring results. It would be possible to assess exposure more accurately if these factors were taken into account. This study aimed to review published papers for recognizing and discussing parameters that could affect benzene biological monitoring. Two types of effects can be distinguished: positive and negative effects. Factors causing positive effects will increase the metabolite concentration in urine more than expected. Furthermore, the parameters that decrease the urinary metabolite level were referred to as false negatives. From the papers, sixteen influential factors were extracted that might affect benzene biological monitoring results. Identified factors were clarified in terms of their nature and mechanism of action. It is also important to note that some factors influence the quantity and quality of the influence of other factors. As a result of this study, a decision-making protocol was developed for interpreting the final results of benzene biological monitoring.


Asunto(s)
Benceno , Exposición Profesional , Benceno/toxicidad , Benceno/análisis , Monitoreo del Ambiente , Monitoreo Biológico , Industrias , Biomarcadores/orina
19.
Environ Res ; 251(Pt 1): 118553, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428562

RESUMEN

Climatic and meteorological conditions are among the factors affecting the ambient concentrations of BTEX compounds. This systematic review and meta-analysis aimed to interrogate the seasonal effect of climatic conditions on the concentrations of BTEX compounds. Three electronic bibliographic databases including Scopus, PubMed, and Web of Science were systematically searched up to November 14, 2023. The search algorithm followed PRISMA guidance and consisted of three groupings of keywords and their possible combinations. For various climatic conditions, the overall mean and 95% confidence interval (CI) of effect size related to BTEX concentrations were calculated using a random-effect model. In total, 104 articles were included for evaluation in this review. BTEX ambient concentration was higher in winter (ranging from 36 out of 79 relevant studies for xylene to 52 out of 97 relevant studies for benzene) followed by summer and autumn. For humidity conditions, the highest exposure values for BTEX were detected for rainy weather (ranging from 3 out of 5 relevant studies for toluene and xylene to 4 out of 5 relevant studies for benzene and ethyl benzene) compared to dry conditions. The pooled concentration (µg/m3) of benzene, toluene, ethyl benzene, and xylene were computed as 2.61, 7.12, 2.21, and 3.61 in spring, 2.13, 7.53, 1.61, and 2.75 in summer, 3.04, 9.59, 3.14, and 5.50 in autumn, and 3.56, 8.71, 2.35, and 3.91 in winter, respectively. Moreover, the pooled concentrations (µg/m3) of BTEX were measured as 2.98, 7.22, 1.90, and 3.03 in dry weather and 3.15, 6.30, 2.14, and 3.86 in rainy or wet weather, respectively. In most seasons, the ambient concentrations of BTEX were higher in countries with low and middle incomes and in Middle Eastern countries and East/Southeast Asia compared to those in other regions (P < 0.001). The increasing concentrations of BTEX in winter and autumn followed by the summer season and during rainy/wet weather appear to be reasonably consistent despite variations in study methods, quality, or geography. Therefore, it is recommended that more serious control measures are considered for decreasing exposure to BTEX in these climatic conditions.


Asunto(s)
Contaminantes Atmosféricos , Derivados del Benceno , Estaciones del Año , Derivados del Benceno/análisis , Contaminantes Atmosféricos/análisis , Clima , Monitoreo del Ambiente , Xilenos/análisis , Benceno/análisis , Tolueno/análisis , Atmósfera/química
20.
Environ Res ; 257: 119213, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782339

RESUMEN

Recent reports suggest that benzene exposure may be associated with solid cancers, such as lung and bladder cancers. Instead, evidence on the association between benzene and colorectal cancer (CRC) is sparse. Thus, we aimed to summarize current literature on the association between occupational benzene exposure and CRC. We searched Pubmed, Embase (through Ovid), and Scopus to retrieve cohort and nested case-control studies on the association between occupational benzene exposure and solid cancers. The search was initially completed in December 2022 and later updated in April 2024. We assessed quality of included studies using a modified version of Newcastle-Ottawa Scale. We computed pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) of CRC according to occupational benzene exposure, using the Paule-Mandel method. Twenty-eight studies were included in the meta-analysis. Most of them were conducted in Europe or North America (82.1%) and were industry-based (89.3%). Pooled RRs comparing workers exposed to benzene with those who were unexposed for incidence and mortality were 1.10 (95% CI: 1.06, 1.15) and 1.04 (95% CI: 0.97, 1.11) for CRC, 1.12 (95% CI: 1.01, 1.24) and 1.08 (95% CI: 0.99, 1.19) for colon cancer, and 1.04 (95% CI: 0.94, 1.14) and 1.05 (95% CI: 0.92, 1.19) for rectal cancer, respectively. Only one study supported the occurrence of a dose-response relationship between occupational benzene exposure and CRC, while others found no increase in risk according to dose of exposure or duration of employment. Our findings suggest that occupational benzene exposure may be associated with CRC. Further research with detailed assessment of individual-level exposure is warranted to confirm our results.


Asunto(s)
Benceno , Neoplasias Colorrectales , Exposición Profesional , Exposición Profesional/efectos adversos , Benceno/toxicidad , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/inducido químicamente , Humanos , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA