Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740583

RESUMEN

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Asunto(s)
Movimiento Celular , Quimioterapia Combinada , Nanopartículas , Neoplasias , Dióxido de Silicio , Movimiento Celular/efectos de los fármacos , Dióxido de Silicio/química , Quimioterapia Combinada/métodos , Neoplasias/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Nanopartículas/ultraestructura , Células A549 , Microscopía Electrónica de Transmisión , Humanos
2.
Talanta ; 281: 126844, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39277931

RESUMEN

Self-powered biosensors with high sensitivity have garnered significant interest for their potential applications in the realm of portable sensing. Herein, a self-powered biosensor with a novel signal amplification strategy was developed by integrating target-controlled release of mediator with an enzyme biofuel cell for the ultrasensitive detection of acetamiprid (ACE). Zeolitic imidazolate framework-67 was utilized as both a nanocontainer for capturing the electron mediator 2,2'-azidobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and a precursor for the synthesis of cobalt nanoparticles/nitrogen, sulfur-codoped carbon nanotubes (Co NPs/NS-CNTs), which were employed as the electrode material for constructing both the glucose oxidase-based bioanode and the laccase-based biocathode. The target analyte ACE can specifically bind to its aptamer, leading to the release of ABTS, which cyclically participates in the catalytic reaction of the biocathode, thereby amplifying the electrochemical signal. By leveraging the benefits of ABTS cyclic catalysis and the effective electrocatalysis of bioelectrodes based on Co NPs/NS-CNTs, the self-powered biosensor has a broad detection range of 0.1-1000 fM and a low detection limit of 25 aM toward ACE. The proposed signal amplification approach presents a promising strategy for enhancing sensitivity and enabling portable analysis in applications of food safety, environmental monitoring, and medical diagnostics.

3.
Biosens Bioelectron ; 192: 113547, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34385013

RESUMEN

Herein, a photocurrent polarity switching platform for highly selective assay of mucin 1 (MUC1) was developed based on target-induced hemin transfer from ZrO2 hollow spheres (ZrO2 HSs) to G-quadruplex nanowires (G wires). In this system, SiO2 spheres were used as templates to synthesize the uniform and mesoporous ZrO2 HSs. As nanocontainers, ZrO2 HSs could load hemin in its cavity via pores. Then, the aptamers of MUC1, as bio-gates, blocked the pores of ZrO2 HSs based on the specific binding of Zr4+ and the phosphate groups of aptamer. In the presence of MUC1, the aptamer could specifically recognize and bind with MUC1, and then leave away from the surface of ZrO2 HSs, which resulted in the opening of the bio-gates and releasing of hemin. Assisted with the G wires formed on the Au NPs/In2S3/ITO, the released hemin was captured on the electrode through the formation of hemin/G-quadruplex structure, leading to the switch of the photocurrent polarity of the electrode from anodic photocurrent to cathodic photocurrent. The proposed photoelectrochemical biosensor showed outstanding performance for MUC1 assay with high selectivity, wide linear response range (1 fg mL-1 -10 ng mL-1) and lower detection limit (0.48 fg mL-1). And the strategy could be easily extended to a triple-mode detection of MUC1 because the hemin/G-quadruplex structure was widely used in electrochemical and colorimetric methods as a hydrogen peroxide mimetic enzyme, which might provide wide applications in biological or clinical studies.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Nanocables , ADN Catalítico/metabolismo , Técnicas Electroquímicas , Hemina , Límite de Detección , Mucina-1 , Dióxido de Silicio
4.
Biosens Bioelectron ; 166: 112448, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32862844

RESUMEN

A simple homogeneous electrochemical aptasensor was designed by using target-responsive substrate releasing from aptamer-gated zeolitic imidazolate framework-8 (ZIF-8)-derived porous carbon nanocontainer. The nanocontainer (Z-700) was prepared by calcination of ZIF-8 at 700 °C. Z-700 had great biocompatibility, high surface areas and pore volume, especially the graphene-like π-rich structure, which was beneficial for adsorbing aptamer easily. The electroactive dyes methylene blue (MB) was then trapped in the pores of Z-700 and easily capped with aptamer as gatekeeper based on π-stacking interaction. Upon addition of target protein thrombin (Thb), the Thb could specifically recognize and combine with its aptamer to form complex. Thereafter, the aptamer bio-gate opened and the MB released from the pores, which could be detected on the screen-printed electrode. Under the optimized conditions, the proposed Thb aptasensor showed a wide detection range from 1 fM to 1 nM with a low detection limit of 0.57 fM. The strategy by using ZIF-8-derived porous carbon and aptamer bio-gate provides a promising scheme for developing simple, rapid, reliable and ultrasensitive bioassays, which has a great potential as a powerful tool in disease diagnosis and biomedicine.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Zeolitas , Carbono , Técnicas Electroquímicas , Electrodos , Oro , Límite de Detección , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA