Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Epilepsy Behav ; 151: 109606, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199054

RESUMEN

Neuroinflammation (NI) is a key pathophysiological contributor to treatment-resistant epilepsy (TRE) that remains challenging to observe in vivo. Magnetic resonance spectroscopic imaging and thermometry (MRSI-t) is an emerging technique that can be used to non-invasively map brain temperature, whereby brain temperature elevations serve as a surrogate for the cellular and biochemical processes associated with NI. In a previous multimodal imaging study of focal epilepsy patients, we observed MRSI-t-based brain temperature elevations ipsilateral to the seizure onset zone (SOZ) that were concordant with evidence of edema (Sharma et al., 2023). Despite its potential as tool, it is unclear if MRSI-t can monitor changes in brain temperature in response to treatment. We imaged 25 participants approximately 12-weeks apart. Eight patients with TRE were imaged before receiving highly-purified pharmaceutical grade cannabidiol (CBD; pre-CBD) and after 12-weeks of CBD (on-CBD) therapy. Seventeen healthy controls (HCs) were also imaged twice. Repeated measures t-tests computed changes in TRE patients' seizure symptoms, mood, and brain temperature within their respective SOZs. Repeated measures ANOVAs tested Group*Time changes in imaging data. Participants with TRE had abnormally high peak brain temperatures within their SOZs that decreased after CBD initiation (p < 0.0001). Seizure severity scores also improved after CBD initiation (p < 0.001). These findings provide insights into the possible neural effects of CBD, and further demonstrate MRSI-t's potential as a tool for delineating SOZ. Further investigations into MRSI-t as a longitudinal measure of therapy-induced changes in NI are warranted.


Asunto(s)
Cannabidiol , Epilepsia Refractaria , Epilepsia , Humanos , Cannabidiol/farmacología , Anticonvulsivantes , Temperatura , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Convulsiones/diagnóstico , Encéfalo/diagnóstico por imagen
2.
Epilepsia ; 64(5): 1289-1304, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36762949

RESUMEN

OBJECTIVE: Neuroinflammation (NI) is a pathophysiological factor in many neurological disorders, including epilepsy. Because NI causes microstructural tissue damage that worsens with increasing brain temperature, abnormally elevated brain temperatures may be a surrogate measure of the biochemical consequences of NI. This study investigated whether patients with temporal lobe epilepsy (TLE) have abnormal brain temperature elevations (TCRE ) in seizure-producing regions that show evidence of edema and/or microstructural damage. METHODS: Twenty adults with TLE and 20 healthy controls (HCs) were scanned at 3-Tesla. TCRE in each voxel was calculated (TCRE  = -102.61(ΔH20-CRE) + 206.1°C) by non-invasive volumetric magnetic resonance spectroscopic imaging and thermometry (MRSI-t). Multi-shell diffusion images were processed by neurite orientation and density imaging (NODDI). Voxel wise two-sample t tests computed group differences in imaging data. Multimodal data fusion (joint independent component analysis [ICA]) determined the spatial coupling of TCRE with NODDI. RESULTS: TCRE analyses showed that, compared to HCs, TLEs had higher TCRE (p < .001). NODDI analyses showed increased extracellular free water (pFWE < 0.05) in the medial temporal lobes, with the most pronounced increases ipsilateral to seizure onset. TLEs also had increased angular dispersion of neurites (p < .001) and decreased neurite density (pFWE <0.05) in the ictal-onset medial temporal lobe, as well as more widespread, bilateral patterns of abnormalities. Focal increases in TCRE were spatially concordant with increased free water in the left inferior and middle temporal gyri and the associated cortex. In TLE, ICA loadings extracted from this region of overlap were associated with greater mood disturbance (r = .34, p = .02) and higher depression scores (r = .37, p = .009). SIGNIFICANCE: The spatial concordance between focal TCRE elevations and edema in TLE supports the notion that brain thermometry visualizes the correlates of focal NI. MRSI-t-based TCRE elevations may, therefore, be a useful biomarker for identifying seizure-producing tissue in patients with focal epilepsy caused by brain damage.


Asunto(s)
Epilepsia del Lóbulo Temporal , Adulto , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Temperatura , Encéfalo , Convulsiones/patología , Imagen por Resonancia Magnética , Agua
3.
Brain ; 145(6): 2031-2048, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35691613

RESUMEN

Patients undergo interventions to achieve a 'normal' brain temperature; a parameter that remains undefined for humans. The profound sensitivity of neuronal function to temperature implies the brain should be isothermal, but observations from patients and non-human primates suggest significant spatiotemporal variation. We aimed to determine the clinical relevance of brain temperature in patients by establishing how much it varies in healthy adults. We retrospectively screened data for all patients recruited to the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High Resolution Intensive Care Unit Sub-Study. Only patients with direct brain temperature measurements and without targeted temperature management were included. To interpret patient analyses, we prospectively recruited 40 healthy adults (20 males, 20 females, 20-40 years) for brain thermometry using magnetic resonance spectroscopy. Participants were scanned in the morning, afternoon, and late evening of a single day. In patients (n = 114), brain temperature ranged from 32.6 to 42.3°C and mean brain temperature (38.5 ± 0.8°C) exceeded body temperature (37.5 ± 0.5°C, P < 0.0001). Of 100 patients eligible for brain temperature rhythm analysis, 25 displayed a daily rhythm, and the brain temperature range decreased in older patients (P = 0.018). In healthy participants, brain temperature ranged from 36.1 to 40.9°C; mean brain temperature (38.5 ± 0.4°C) exceeded oral temperature (36.0 ± 0.5°C) and was 0.36°C higher in luteal females relative to follicular females and males (P = 0.0006 and P < 0.0001, respectively). Temperature increased with age, most notably in deep brain regions (0.6°C over 20 years, P = 0.0002), and varied spatially by 2.41 ± 0.46°C with highest temperatures in the thalamus. Brain temperature varied by time of day, especially in deep regions (0.86°C, P = 0.0001), and was lowest at night. From the healthy data we built HEATWAVE-a 4D map of human brain temperature. Testing the clinical relevance of HEATWAVE in patients, we found that lack of a daily brain temperature rhythm increased the odds of death in intensive care 21-fold (P = 0.016), whilst absolute temperature maxima or minima did not predict outcome. A warmer mean brain temperature was associated with survival (P = 0.035), however, and ageing by 10 years increased the odds of death 11-fold (P = 0.0002). Human brain temperature is higher and varies more than previously assumed-by age, sex, menstrual cycle, brain region, and time of day. This has major implications for temperature monitoring and management, with daily brain temperature rhythmicity emerging as one of the strongest single predictors of survival after brain injury. We conclude that daily rhythmic brain temperature variation-not absolute brain temperature-is one way in which human brain physiology may be distinguished from pathophysiology.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Hipotermia Inducida , Adulto , Anciano , Temperatura Corporal/fisiología , Encéfalo/fisiología , Lesiones Encefálicas/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Femenino , Humanos , Masculino , Estudios Retrospectivos , Temperatura
4.
Sci Rep ; 14(1): 7450, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548815

RESUMEN

The pathophysiology underlying the post-acute sequelae of COVID-19 remains understudied and poorly understood, particularly in healthy adults with a history of mild infection. Chronic neuroinflammation may underlie these enduring symptoms, but studying neuroinflammatory phenomena in vivo is challenging, especially without a comparable pre-COVID-19 dataset. In this study, we present a unique dataset of 10 otherwise healthy individuals scanned before and after experiencing mild COVID-19. Two emerging MR-based methods were used to map pre- to post-COVID-19 brain temperature and free water changes. Post-COVID-19 brain temperature and free water increases, which are indirect biomarkers of neuroinflammation, were found in structures functionally associated with olfactory, cognitive, and memory processing. The largest pre- to post-COVID brain temperature increase was observed in the left olfactory tubercle (p = 0.007, 95% CI [0.48, 3.01]), with a mean increase of 1.75 °C. Notably, the olfactory tubercle is also the region of the primary olfactory cortex where participants with chronic olfactory dysfunction showed the most pronounced increases as compared to those without lingering olfactory dysfunction (adjusted pFDR = 0.0189, 95% CI [1.42, 5.27]). These preliminary insights suggest a potential link between neuroinflammation and chronic cognitive and olfactory dysfunction following mild COVID-19, although further investigations are needed to improve our understanding of what underlies these phenomena.


Asunto(s)
COVID-19 , Trastornos del Olfato , Adulto , Humanos , Enfermedades Neuroinflamatorias , Temperatura , Encéfalo/diagnóstico por imagen , Trastornos del Olfato/etiología , Agua
5.
Magn Reson Imaging ; 95: 59-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273626

RESUMEN

PURPOSE: The presence of orientation-dependent susceptibility artifacts in magnetic resonance chemical shift thermometry (CST) can confound accurate temperature calculations. Here, we quantify the effect of white matter (WM) tract orientation on CST due to tissue-specific susceptibility. METHODS: Twenty-nine healthy volunteers (27 ± 4 years old) were scanned on a 3 T MR scanner with a 32-channel head coil. Diffusion tensor imaging (DTI), T1-weighted imaging, and single voxel spectroscopy (SVS) for CST were acquired. Participants were then asked to rotate their head ∼3-5° (yaw or roll) to alter the orientation of WM tracts relative to the external magnetic field. After head rotation, a second SVS scan and T1-weighted imaging were acquired. The WM-fraction-normalized DTI principal eigenvector (V1) images were used to calculate the length of the x-y component of V1, which was used as a surrogate for WM tracts perpendicular to B0. A linear regression model was used to determine the relationship between the perpendicular WM tracts and brain temperature. RESULTS: Significant temperature differences between post- and pre-head rotation scans were observed for brain (-0.72 °C ± 1.36 °C, p = 0.01) but not body (0.012 °C ± 0.07 °C, p = 0.37) temperatures. The difference in brain temperature was positively associated with the corresponding change in perpendicular WM tracts after head rotation (R2 = 0.26, p = 0.005). CONCLUSION: Our results indicate WM tract orientation affects temperature calculations, suggesting artifacts from orientation-dependent susceptibility may be present in CST.


Asunto(s)
Termometría , Sustancia Blanca , Humanos , Adulto Joven , Adulto , Imagen de Difusión Tensora/métodos , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA