Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032797

RESUMEN

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Asunto(s)
Axones , Recuperación de la Función , Miembro 2 de la Familia de Transportadores de Soluto 12 , Traumatismos de la Médula Espinal , Sustancia Blanca , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Axones/efectos de los fármacos , Axones/patología , Femenino , Vaina de Mielina/patología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Ratones , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Bumetanida/farmacología
2.
Mov Disord ; 39(3): 618-622, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291616

RESUMEN

BACKGROUND: Acting on the main target of dopaminergic cells, the striatal γ-aminobutyric acid (GABA)-ergic cells, might be a new way to treat persons with Parkinson's disease (PD). OBJECTIVE: The objective of this study was to assess the efficacy of bumetanide, an Na-K-Cl cotransporter (NKCC1) inhibitor, to improve motor symptoms in PD. METHODS: This was a 4-month double-blind, randomized, parallel-group, placebo-controlled trial of 1.75 to 3 mg/day bumetanide as an adjunct to levodopa in 44 participants with PD and motor fluctuations. RESULTS: Compared to the baseline, the mean change in OFF Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III score after 4 months of treatment (primary endpoint) did not improve significantly compared with placebo. No changes between participants treated with bumetanide and those treated with placebo were observed for most other outcome measures. Despite no relevant safety signals, bumetanide was poorly tolerated. CONCLUSIONS: There was no evidence in this study that bumetanide has efficacy in improving motor symptoms of PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Antiparkinsonianos , Bumetanida/uso terapéutico , Levodopa/uso terapéutico , Evaluación de Resultado en la Atención de Salud , Método Doble Ciego , Resultado del Tratamiento
3.
Epilepsia ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212418

RESUMEN

OBJECTIVE: Following hypoxic-ischemic (HI) brain injury, neuronal cytoplasmic chloride concentration ([Cl-]i) increases, potentially contributing to depolarizing γ-aminobutyric acid (GABA) responses, onset of seizures, and the failure of antiepileptic drugs that target inhibitory chloride-permeable GABAA receptors. Post-HI seizures characteristically begin hours after injury, by which time substantial accumulation of [Cl-]i may have already occurred. In immature neurons, a major pathway for Cl- influx is the reversible Na+-K+-2Cl- cotransporter NKCC1. METHODS: Spontaneous neuronal network, neuronal [Cl-]i, and GABA activity were determined in hippocampal preparations from neonatal Clomeleon and SuperClomeleon/DLX-cre mice to test whether blocking NKCC1 earlier after oxygen-glucose deprivation (OGD) injury would more effectively ameliorate the increase in [Cl-]i, ictallike epileptiform discharges (ILDs), and the failure of the GABAergic anticonvulsant phenobarbital. RESULTS: In vitro, murine intact hippocampi were free of ILDs for 12 h after preparation. Transient OGD resulted in a gradual increase in [Cl-]i, depolarizing action of GABA, and facilitation of neuronal network activity. Spontaneous ILDs began 3-5 h after injury. Blocking NKCC1 with 2-10 µmol·L-1 bumetanide reduced [Cl-]i equally well when applied up to 10 h after injury. Whereas phenobarbital or bumetanide applied separately were less effective when applied later after injury, ILDs were successfully suppressed by the combination of phenobarbital and bumetanide regardless of the number of prior ILDs or delay in application. SIGNIFICANCE: The present age-specific group studies demonstrate that after OGD, NKCC1 transport activity significantly contributes to progressive [Cl-]i accumulation, depolarizing action of GABA, and delayed onset of ILDs. In this neonatal model of neuronal injury and ILDs, earlier treatment with bumetanide alone more efficiently recovered control baseline [Cl-]i and depressed epileptiform discharges. However, there was no time dependency to the anti-ictal efficacy of the combination of phenobarbital and bumetanide. These in vitro results suggest that after perinatal injury, early pre-emptive treatment with phenobarbital plus bumetanide would be as efficacious as late treatment after seizures are manifest.

4.
Pharmacol Res ; 208: 107389, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243913

RESUMEN

Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Metabolismo Energético , Mitocondrias , Plasticidad Neuronal , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Humanos , Animales , Mitocondrias/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/patología , Estrés Oxidativo
5.
Cereb Cortex ; 33(10): 5906-5923, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36573432

RESUMEN

The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.


Asunto(s)
Encéfalo , Neuronas , Ratones , Animales , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Hipocampo/metabolismo
6.
Handb Exp Pharmacol ; 283: 249-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37563251

RESUMEN

Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.


Asunto(s)
Cloruros , Simportadores de Cloruro de Sodio-Potasio , Humanos , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Cloruros/metabolismo , Microscopía por Crioelectrón , Miembro 3 de la Familia de Transportadores de Soluto 12 , Cationes/metabolismo
7.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840092

RESUMEN

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Asunto(s)
Anestésicos por Inhalación , Animales Recién Nacidos , Isoflurano , Cotransportadores de K Cl , Miembro 2 de la Familia de Transportadores de Soluto 12 , Simportadores , Animales , Isoflurano/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/efectos adversos , Ratas , Ratones , Ratas Sprague-Dawley , Masculino , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Femenino , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo
8.
Biomed Chromatogr ; 38(4): e5825, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234085

RESUMEN

Determining a drug's bioavailability and bioequivalence is important for developing and approving a drug product. The procedure supports applications for generic drug products and novel therapeutic substances, makes important decisions regarding safety and efficacy, and measures a drug's concentration in biological matrices. This study aimed to develop and validate a specific, simple, sensitive, and accurate method using liquid chromatography-tandem mass spectrometry (LC-MS) for measuring bumetanide (BUM) in human plasma. Chromatographic separation was achieved using a Hypurity C18 column (4.6 × 50 mm, 5 µm) under isocratic conditions, and LC-MS detected positive ionization acquisition modes. Protonated precursor to product ion transitions were observed at m/z 365.08 → 240.10 and 370.04 → 244.52 for BUM and internal standard, respectively. The linear range of BUM in plasma samples was 3.490-401.192 ng/mL. The inter-precision value ranged from 1.76% to 4.75%. The inter-accuracy value ranged from 96.46% to 99.95%. The method was adequately validated per the U.S. Food and Drug Administration guidelines, and the results were within permissible bounds. The Cmax and Tmax values were ~53.097 ± 13.537 ng/mL and 1.25 (0.67-5.00) h, respectively. The new approach showed satisfactory results for studying BUM in human plasma with potential use in pharmacokinetic and bioequivalence investigations.


Asunto(s)
Bumetanida , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Disponibilidad Biológica , Equivalencia Terapéutica , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos
9.
J Physiol ; 601(8): 1425-1447, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36847245

RESUMEN

Current anti-spastic medication significantly compromises motor recovery after spinal cord injury (SCI), indicating a critical need for alternative interventions. Because a shift in chloride homeostasis decreases spinal inhibition and contributes to hyperreflexia after SCI, we investigated the effect of bumetanide, an FDA-approved sodium-potassium-chloride intruder (NKCC1) antagonist, on presynaptic and postsynaptic inhibition. We compared its effect with step-training as it is known to improve spinal inhibition by restoring chloride homeostasis. In SCI rats, a prolonged bumetanide treatment increased postynaptic inhibition but not presynaptic inhibition of the plantar H-reflex evoked by posterior biceps and semitendinosus (PBSt) group I afferents. By using in vivo intracellular recordings of motoneurons, we further show that a prolonged bumetanide increased postsynaptic inhibition by hyperpolarizing the reversal potential for inhibitory postsynaptic potentials (IPSPs) after SCI. However, in step-trained SCI rats an acute delivery of bumetanide decreased presynaptic inhibition of the H-reflex, but not postsynaptic inhibition. These results suggest that bumetanide might be a viable option to improve postsynaptic inhibition after SCI, but it also decreases the recovery of presynaptic inhibition with step-training. We discuss whether the effects of bumetanide are mediated by NKCC1 or by off-target effects. KEY POINTS: After spinal cord injury (SCI), chloride homeostasis is dysregulated over time in parallel with the decrease in presynaptic inhibition of Ia afferents and postsynaptic inhibition of motoneurons, and the development of spasticity. While step-training counteracts these effects, it cannot always be implemented in the clinic because of comorbidities. An alternative intervention is to use pharmacological strategies to decrease spasticity without hindering the recovery of motor function with step-training. Here we found that, after SCI, a prolonged bumetanide (an FDA-approved antagonist of the sodium-potassium-chloride intruder, NKCC1) treatment increases postsynaptic inhibition of the H-reflex, and it hyperpolarizes the reversal potential for inhibitory postsynaptic potentials in motoneurons. However, in step-trained SCI, an acute delivery of bumetanide decreases presynaptic inhibition of the H-reflex, but not postsynaptic inhibition. Our results suggest that bumetanide has the potential to decrease spastic symptoms related to a decrease in postsynaptic but not presynaptic inhibition after SCI.


Asunto(s)
Bumetanida , Traumatismos de la Médula Espinal , Ratas , Animales , Bumetanida/farmacología , Médula Espinal/fisiología , Cloruros , Traumatismos de la Médula Espinal/tratamiento farmacológico , Neuronas Motoras/fisiología , Espasticidad Muscular
10.
Neurobiol Dis ; 178: 106013, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706928

RESUMEN

Neonatal hypoxia causes cytotoxic neuronal swelling by the entry of ions and water. Multiple water pathways have been implicated in neurons because these cells lack water channels, and their membrane has a low water permeability. NKCC1 and KCC2 are cation-chloride cotransporters (CCCs) involved in water movement in various cell types. However, the role of CCCs in water movement in neonatal neurons during hypoxia is unknown. We studied the effects of modulating CCCs pharmacologically on neuronal swelling in the neocortex (layer IV/V) of neonatal mice (post-natal day 8-13) during prolonged and brief hypoxia. We used acute brain slices from Clomeleon mice which express a ratiometric fluorophore sensitive to Cl- and exposed them to oxygen-glucose deprivation (OGD) while imaging neuronal size and [Cl-]i by multiphoton microscopy. Neurons were identified using a convolutional neural network algorithm, and changes in the somatic area and [Cl-]i were evaluated using a linear mixed model for repeated measures. We found that (1) neuronal swelling and Cl- accumulation began after OGD, worsened during 20 min of OGD, or returned to baseline during reoxygenation if the exposure to OGD was brief (10 min). (2) Neuronal swelling did not occur when the extracellular Cl- concentration was low. (3) Enhancing KCC2 activity did not alter OGD-induced neuronal swelling but prevented Cl- accumulation; (4) blocking KCC2 led to an increase in Cl- accumulation during prolonged OGD and aggravated neuronal swelling during reoxygenation; (5) blocking NKCC1 reduced neuronal swelling during early but not prolonged OGD and aggravated Cl- accumulation during prolonged OGD; and (6) treatment with the "broad" CCC blocker furosemide reduced both swelling and Cl- accumulation during prolonged and brief OGD, whereas simultaneous NKCC1 and KCC2 inhibition using specific pharmacological blockers aggravated neuronal swelling during prolonged OGD. We conclude that CCCs, and other non-CCCs, contribute to water movement in neocortical neurons during OGD in the neonatal period.


Asunto(s)
Neocórtex , Enfermedades del Sistema Nervioso , Simportadores , Animales , Ratones , Hipoxia/metabolismo , Neocórtex/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Agua/metabolismo , Cotransportadores de K Cl
11.
Mol Pain ; 19: 17448069231159855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760008

RESUMEN

Previous studies have confirmed the relationship between chloride homeostasis and pain. However, the role of sodium potassium chloride co-transporter isoform 1 (NKCC1) in dorsal horn and dorsal root ganglion neurons (DRGs) in spinal cord injury (SCI)-induced neuropathic pain (NP) remains inconclusive. Therefore, we aimed to explore whether suppression of NKCC1 in the spinal cord and DRGs alleviate the NP of adult rats with thoracic spinal cord contusion. Thirty adult female Sprague-Dawley rats (8 week-old, weighing 250-280 g) were randomly divided into three groups with ten animals in each group (sham, SCI, and bumetanide groups). The paw withdrawal mechanical threshold and paw withdrawal thermal latency were recorded before injury (baseline) and on post-injury days 14, 21, 28, and 35. At the end of experiment, western blotting (WB) analysis, quantitative real-time Polymerase Chain Reaction (PCR) and immunofluorescence were performed to quantify NKCC1 expression. Our results revealed that NKCC1 protein expression in the spinal cord and DRGs was significantly up-regulated in rats with SCI. Intraperitoneal treatment of bumetanide (an NKCC1 inhibitor) reversed the expression of NKCC1 in the dorsal horn and DRGs and ameliorated mechanical ectopic pain and thermal hypersensitivities in the SCI rats. Our study demonstrated the occurrence of NKCC1 overexpression in the spinal cord and DRGs in a rodent model of NP and indicated that changes in the peripheral nervous system also play a major role in promoting pain sensitization after SCI.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Bumetanida/metabolismo , Bumetanida/farmacología , Ganglios Espinales/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Hiperalgesia/metabolismo
12.
Epilepsy Behav ; 139: 109057, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586153

RESUMEN

Loop diuretics such as furosemide and bumetanide, which act by inhibiting the Na-K-2Cl cotransporter NKCC2 at the thick ascending limb of the loop of Henle, have been shown to exert anti-seizure effects. However, the exact mechanism of this effect is not known. For bumetanide, it has been suggested that inhibition of the NKCC isoform NKCC1 in the membrane of brain neurons may be involved; however, NKCC1 is expressed by virtually all cell types in the brain, which makes any specific targeting of neuronal NKCC1 by bumetanide impossible. In addition, bumetanide only poorly penetrates the brain. We have previously shown that loop diuretics azosemide and torasemide also potently inhibit NKCC1. In contrast to bumetanide and furosemide, azosemide and torasemide lack a carboxylic group, which should allow them to better penetrate through biomembranes by passive diffusion. Because of the urgent medical need to develop new treatments for neonatal seizures and their adverse outcome, we evaluated the effects of azosemide and torasemide, administered alone or in combination with phenobarbital or midazolam, in a rat model of birth asphyxia and neonatal seizures. Neither diuretic suppressed the seizures when administered alone but torasemide potentiated the anti-seizure effect of midazolam. Brain levels of torasemide were below those needed to inhibit NKCC1. In addition to suppressing seizures, the combination of torasemide and midazolam, but not midazolam alone, prevented the cognitive impairment of the post-asphyxial rats at 3 months after asphyxia. Furthermore, aberrant mossy fiber sprouting in the hippocampus was more effectively prevented by the combination. We assume that either an effect on NKCC1 at the blood-brain barrier and/or cells in the periphery or the NKCC2-mediated diuretic effect of torasemide are involved in the present findings. Our data suggest that torasemide may be a useful option for improving the treatment of neonatal seizures and their adverse outcome.


Asunto(s)
Epilepsia , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Ratas , Animales , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Bumetanida/uso terapéutico , Bumetanida/farmacología , Torasemida , Furosemida/uso terapéutico , Furosemida/farmacología , Asfixia , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Diuréticos/uso terapéutico , Diuréticos/farmacología
13.
Child Psychiatry Hum Dev ; 54(5): 1360-1372, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35292925

RESUMEN

The efficacy of bumetanide (oral liquid formulation 0.5 mg bid) as a treatment for the core symptoms of autism spectrum disorders in children and adolescents aged 7-17 years is being investigated in an international, randomised, double-blind, placebo-controlled phase III study. The primary endpoint is the change in Childhood Autism Rating Scale 2 (CARS2) total raw score after 6 months of treatment. At baseline, the 211 participants analysed are broadly representative of autistic subjects in this age range: mean (SD) age, 10.4 (3.0) years; 82.5% male; 47.7% with intelligence quotient ≥ 70. Mean CARS2 score was 40.1 (4.9) and mean Social Responsiveness Scale score was 116.7 (23.4). Final study results will provide data on efficacy and safety of bumetanide in autistic children and adolescents.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Niño , Masculino , Adolescente , Femenino , Trastorno del Espectro Autista/tratamiento farmacológico , Bumetanida/efectos adversos , Trastorno Autístico/diagnóstico , Método Doble Ciego , Resultado del Tratamiento
14.
J Neuroinflammation ; 19(1): 91, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413993

RESUMEN

BACKGROUND: The mechanisms underlying dysfunction of choroid plexus (ChP) blood-cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood-CSF barrier integrity due to dysregulation of major ChP ion transport system, Na+-K+-Cl- cotransporter 1 (NKCC1), and regulatory Ste20-related proline-alanine-rich kinase (SPAK). METHODS: Sham or ischemic stroke was induced in C57Bl/6J mice. Changes on the SPAK-NKCC1 complex and tight junction proteins (TJs) in the ChP were quantified by immunofluorescence staining and immunoblotting. Immune cell infiltration in the ChP was assessed by flow cytometry and immunostaining. Cultured ChP epithelium cells (CPECs) and cortical neurons were used to evaluate H2O2-mediated oxidative stress in stimulating the SPAK-NKCC1 complex and cellular damage. In vivo or in vitro pharmacological blockade of the ChP SPAK-NKCC1 cascade with SPAK inhibitor ZT-1a or NKCC1 inhibitor bumetanide were examined. RESULTS: Ischemic stroke stimulated activation of the CPECs apical membrane SPAK-NKCC1 complex, NF-κB, and MMP9, which was associated with loss of the blood-CSF barrier integrity and increased immune cell infiltration into the ChP. Oxidative stress directly activated the SPAK-NKCC1 pathway and resulted in apoptosis, neurodegeneration, and NKCC1-mediated ion influx. Pharmacological blockade of the SPAK-NKCC1 pathway protected the ChP barrier integrity, attenuated ChP immune cell infiltration or neuronal death. CONCLUSION: Stroke-induced pathological stimulation of the SPAK-NKCC1 cascade caused CPECs damage and disruption of TJs at the blood-CSF barrier. The ChP SPAK-NKCC1 complex emerged as a therapeutic target for attenuating ChP dysfunction and lymphocyte invasion after stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Plexo Coroideo/metabolismo , Peróxido de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
15.
Epilepsia ; 63(7): 1863-1867, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524444

RESUMEN

A recent Phase II randomized, controlled trial of bumetanide as an adjunctive treatment for neonatal seizures showed a robust efficacy signal and no evidence of toxicity. Concerns regarding bumetanide as an adjunctive anticonvulsant are addressed here. An adequately powered multi-institutional trial is needed to accurately determine efficacy.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Bumetanida/uso terapéutico , Humanos , Recién Nacido , Convulsiones/tratamiento farmacológico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Miembro 2 de la Familia de Transportadores de Soluto 12
16.
Epilepsia ; 63(7): 1868-1873, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524446

RESUMEN

In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral doses of bumetanide applied in vivo lead to concentrations in the brain parenchyma that are at least an order of magnitude lower than what would be sufficient to exert any direct effect-even a transient one-on neuronal functions, including neonatal seizures; and (3) moreover, bumetanide's molecular target in the brain is the Na-K-2Cl cotransporter NKCC1, which has vital functions in neurons, astrocytes, and oligodendrocytes as well as microglia. This would make it impossible even for highly brain-permeant NKCC1 blockers to specifically target depolarizing and excitatory actions of γ-aminobutyric acid in principal neurons of the brain, which is postulated as the rationale of clinical trials on neonatal seizures.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Bumetanida/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , Recién Nacido , Enfermedades del Recién Nacido/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Miembro 2 de la Familia de Transportadores de Soluto 12
17.
Pharmacol Res ; 183: 106363, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905892

RESUMEN

Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.


Asunto(s)
Acuaporinas , Enfermedades Cardiovasculares , Acuaporinas/metabolismo , Transporte Biológico , Corazón , Humanos , Agua
18.
BMC Psychiatry ; 22(1): 452, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799144

RESUMEN

BACKGROUND: Bumetanide is a selective NKCC1 chloride importer antagonist which is being repurposed as a mechanism-based treatment for neurodevelopmental disorders (NDDs). Due to their specific actions, these kinds of interventions will only be effective in particular subsets of patients. To anticipate stratified application, we recently completed three bumetanide trials each focusing on different stratification strategies with the additional objective of deriving the most optimal endpoints. Here we publish the protocol of the post-trial access combined cohort study to confirm previous effects and stratification strategies in the trial cohorts and in new participants. METHOD/DESIGN: Participants of the three previous cohorts and a new cohort will be subjected to 6 months bumetanide treatment using multiple baseline Single Case Experimental Designs. The primary outcome is the change, relative to baseline, in a set of patient reported outcome measures focused on direct and indirect effects of sensory processing difficulties. Secondary outcome measures include the conventional questionnaires 'social responsiveness scale', 'repetitive behavior scale', 'sensory profile' and 'aberrant behavior scale'. Resting-state EEG measurements will be performed at several time-points including at Tmax after the first administration. Assessment of cognitive endpoints will be conducted using the novel Emma Tool box, an in-house designed battery of computerized tests to measure neurocognitive functions in children. DISCUSSION: This study aims to replicate previously shown effects of bumetanide in NDD subpopulations, validate a recently proposed treatment prediction effect methodology and refine endpoint measurements. TRIAL REGISTRATION: EudraCT: 2020-002196-35, registered 16 November 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002196-35/NL.


Asunto(s)
Bumetanida , Trastornos del Neurodesarrollo , Bumetanida/farmacología , Bumetanida/uso terapéutico , Niño , Estudios de Cohortes , Humanos , Trastornos del Neurodesarrollo/tratamiento farmacológico , Proyectos de Investigación , Resultado del Tratamiento
19.
BMC Nephrol ; 23(1): 316, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127661

RESUMEN

BACKGROUND: The co-administration of loop diuretics with thiazide diuretics is a therapeutic strategy in patients with hypertension and volume overload. The aim of this study was to assess the efficacy and safety of treatment with bumetanide plus chlorthalidone in patients with chronic kidney disease (CKD) stage 4-5 KDIGO. METHODS: A double-blind randomized study was conducted. Patients were randomized into two groups: bumetanide plus chlorthalidone group (intervention) and the bumetanide plus placebo group (control) to evaluate differences in TBW, ECW and ECW/TBW between baseline and 30 Days of follow-up. Volume overload was defined as 'bioelectrical impedance analysis as fluid volume above the 90th percentile of a presumed healthy reference population. The study's registration number was NCT03923933. RESULTS: Thirty-two patients with a mean age of 57.2 ± 9.34 years and a median estimated glomerular filtration rate (eGFR) of 16.7 ml/min/1.73 m2 (2.2-29) were included. There was decreased volume overload in the liters of total body water (TBW) on Day 7 (intervention: -2.5 vs. control: -0.59, p = 0.003) and Day 30 (intervention: -5.3 vs. control: -0.07, p = 0.016); and in liters of extracellular water (ECW) on Day 7 (intervention: -1.58 vs. control: -0.43, p < 0.001) and Day 30 (intervention: -3.05 vs. control: -0.15, p < 0.000). There was also a decrease in systolic blood pressure on Day 7 (intervention: -18 vs. control: -7.5, p = 0.073) and Day 30 (intervention: -26.1 vs. control: -10, p = 0.028) and in diastolic blood pressure on Day 7 (intervention: -8.5 vs. control: -2.25, p = 0.059) and Day 30 (intervention: -13.5 vs. control: -3.4, p = 0.018). CONCLUSION: In CKD stage 4-5 KDIGO without renal replacement therapy, bumetanide in combination with chlorthalidone is more effective in treating volume overload and hypertension than bumetanide with placebo.


Asunto(s)
Hipertensión , Insuficiencia Renal Crónica , Desequilibrio Hidroelectrolítico , Anciano , Bumetanida/uso terapéutico , Clortalidona/uso terapéutico , Humanos , Hipertensión/tratamiento farmacológico , Persona de Mediana Edad , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Terapia de Reemplazo Renal , Inhibidores de los Simportadores del Cloruro de Sodio/uso terapéutico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Agua
20.
Acta Neurochir (Wien) ; 164(2): 499-505, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35094147

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH) can lead to acute hydrocephalus (AH). AH pathophysiology is classically attributed to an obstruction of the arachnoid granulations by blood. Recent findings in rodents suggest that after intraventricular hemorrhage, AH is related to cerebrospinal fluid (CSF) hypersecretion by the choroid plexus (CP), as it can be reduced by intracerebroventricular (ICV) injection of bumetanide. OBJECTIVE: Here, we investigated if and how CSF hypersecretion and/or CSF outflow disorders contribute to post-SAH hydrocephalus. METHODS: Ninety-four Wistar rats were used. SAH was induced by the endovascular perforation technique. The presence of AH was confirmed by magnetic resonance imaging (MRI), and rats with AH were randomly assigned to 4 groups: control group, superior sagittal sinus (SSS) thrombosis to block CSF reabsorption, ICV injection of saline, and ICV injection of bumetanide to decrease CSF secretion. Clinical outcome was evaluated with a neuroscore. A second MRI was performed 24 h later to evaluate the ventricular volume. RESULTS: Fifty percent of rats that survived SAH induction had AH. Their ventricular volume correlated well to the functional outcome after 24 h (r = 0.803). In rats with AH, 24 h later, ventricular volume remained equally increased in the absence of any further procedure. Similarly, ICV injection of saline or SSS thrombosis had no impact on the ventricular volume. However, ICV injection of bumetanide reduced AH by 35.9% (p = 0.002). CONCLUSION: In rodents, post-SAH hydrocephalus is may be due to hypersecretion of CSF by the CP, as it is limited by ICV injection of bumetanide. However, we cannot exclude other mechanisms involved in post-SAH acute hydrocephalus.


Asunto(s)
Hidrocefalia , Hemorragia Subaracnoidea , Animales , Bumetanida/farmacología , Bumetanida/uso terapéutico , Plexo Coroideo , Hidrocefalia/tratamiento farmacológico , Hidrocefalia/etiología , Ratas , Ratas Wistar , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA