Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.335
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genes Dev ; 35(11-12): 835-840, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33985971

RESUMEN

Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene transcription in the heart. CARDINAL-deficient mice show ectopic TCF/SRF-dependent mitogenic gene expression and decreased cardiac contractility in response to age and ischemic stress. CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an RNA cofactor for SRF in the heart.


Asunto(s)
Regulación de la Expresión Génica/genética , Corazón/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/genética , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factor de Respuesta Sérica/genética , Transactivadores/genética , Activación Transcripcional
2.
Genes Dev ; 34(1-2): 72-86, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31831627

RESUMEN

Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Transactivadores/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes fos/genética , Células HEK293 , Humanos , Hígado/metabolismo , Melanoma/fisiopatología , Ratones , Mitógenos/farmacología , Tamaño de los Órganos/genética , Regiones Promotoras Genéticas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Úvea/fisiopatología , Proteínas Señalizadoras YAP
3.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713626

RESUMEN

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Asunto(s)
Progresión de la Enfermedad , Interleucina-8 , Neutrófilos , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/inmunología , Microambiente Tumoral/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Ratones , Interleucina-8/metabolismo , Línea Celular Tumoral , Factor de Crecimiento de Hepatocito/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Femenino , Masculino , Infiltración Neutrófila
4.
Proc Natl Acad Sci U S A ; 121(3): e2312913120, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190526

RESUMEN

General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.


Asunto(s)
Anestésicos , Caracteres Sexuales , Humanos , Femenino , Masculino , Animales , Ratones , Anestésicos/farmacología , Anestesia General , Testosterona/farmacología , Inconsciencia
5.
Proc Natl Acad Sci U S A ; 120(13): e2214171120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947514

RESUMEN

Sleep/wake control involves several neurotransmitter and neuromodulatory systems yet the coordination of the behavioral and physiological processes underlying sleep is incompletely understood. Previous studies have suggested that activation of the Nociceptin/orphanin FQ (N/OFQ) receptor (NOPR) reduces locomotor activity and produces a sedation-like effect in rodents. In the present study, we systematically evaluated the efficacy of two NOPR agonists, Ro64-6198 and SR16835, on sleep/wake in rats, mice, and Cynomolgus macaques. We found a profound, dose-related increase in non-Rapid Eye Movement (NREM) sleep and electroencephalogram (EEG) slow wave activity (SWA) and suppression of Rapid Eye Movement sleep (REM) sleep in all three species. At the highest dose tested in rats, the increase in NREM sleep and EEG SWA was accompanied by a prolonged inhibition of REM sleep, hypothermia, and reduced locomotor activity. However, even at the highest dose tested, rats were immediately arousable upon sensory stimulation, suggesting sleep rather than an anesthetic state. NOPR agonism also resulted in increased expression of c-Fos in the anterodorsal preoptic and parastrial nuclei, two GABAergic nuclei that are highly interconnected with brain regions involved in physiological regulation. These results suggest that the N/OFQ-NOPR system may have a previously unrecognized role in sleep/wake control and potential promise as a therapeutic target for the treatment of insomnia.


Asunto(s)
Electroencefalografía , Péptidos Opioides , Ratas , Ratones , Animales , Sueño , Sueño REM/fisiología , Nociceptina
6.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38798004

RESUMEN

Pain experience increases individuals' perception and contagion of others' pain, but whether pain experience affects individuals' affiliative or antagonistic responses to others' pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals' responses to others' pain remain unclear. In this study, we explored the effects of pain experience on individuals' responses to others' pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals' responses to others' pain by pain experience.


Asunto(s)
Encéfalo , Ratones Endogámicos C57BL , Dolor , Proteínas Proto-Oncogénicas c-fos , Animales , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Masculino , Dolor/psicología , Dolor/fisiopatología , Conducta Social , Reacción de Prevención/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/fisiología
7.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236296

RESUMEN

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Asunto(s)
Miedo , Genes Inmediatos-Precoces , Factores de Intercambio de Guanina Nucleótido , Memoria , Transducción de Señal , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Proto-Oncogénicas c-fos
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181604

RESUMEN

Acute stress leads to sequential activation of functional brain networks. A biologically relevant question is exactly which (single) cells belonging to brain networks are changed in activity over time after acute stress across the entire brain. We developed a preprocessing and analytical pipeline to chart whole-brain immediate early genes' expression-as proxy for cellular activity-after a single stressful foot shock in four dimensions: that is, from functional networks up to three-dimensional (3D) single-cell resolution and over time. The pipeline is available as an R package. Most brain areas (96%) showed increased numbers of c-fos+ cells after foot shock, yet hypothalamic areas stood out as being most active and prompt in their activation, followed by amygdalar, prefrontal, hippocampal, and finally, thalamic areas. At the cellular level, c-fos+ density clearly shifted over time across subareas, as illustrated for the basolateral amygdala. Moreover, some brain areas showed increased numbers of c-fos+ cells, while others-like the dentate gyrus-dramatically increased c-fos intensity in just a subset of cells, reminiscent of engrams; importantly, this "strategy" changed after foot shock in half of the brain areas. One of the strengths of our approach is that single-cell data were simultaneously examined across all of the 90 brain areas and can be visualized in 3D in our interactive web portal.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Dolor/fisiopatología , Animales , Electrochoque/métodos , Pie/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Análisis de la Célula Individual , Análisis Espacio-Temporal , Estrés Fisiológico/fisiología
9.
J Neurosci ; 43(35): 6141-6163, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37541836

RESUMEN

Mouse ultrasonic vocalizations (USVs) contain predictable sequential structures like bird songs and speech. Neural representation of USVs in the mouse primary auditory cortex (Au1) and its plasticity with experience has been largely studied with single-syllables or dyads, without using the predictability in USV sequences. Studies using playback of USV sequences have used randomly selected sequences from numerous possibilities. The current study uses mutual information to obtain context-specific natural sequences (NSeqs) of USV syllables capturing the observed predictability in male USVs in different contexts of social interaction with females. Behavioral and physiological significance of NSeqs over random sequences (RSeqs) lacking predictability were examined. Female mice, never having the social experience of being exposed to males, showed higher selectivity for NSeqs behaviorally and at cellular levels probed by expression of immediate early gene c-fos in Au1. The Au1 supragranular single units also showed higher selectivity to NSeqs over RSeqs. Social-experience-driven plasticity in encoding NSeqs and RSeqs in adult females was probed by examining neural selectivities to the same sequences before and after the above social experience. Single units showed enhanced selectivity for NSeqs over RSeqs after the social experience. Further, using two-photon Ca2+ imaging, we observed social experience-dependent changes in the selectivity of sequences of excitatory and somatostatin-positive inhibitory neurons but not parvalbumin-positive inhibitory neurons of Au1. Using optogenetics, somatostatin-positive neurons were identified as a possible mediator of the observed social-experience-driven plasticity. Our study uncovers the importance of predictive sequences and introduces mouse USVs as a promising model to study context-dependent speech like communications.SIGNIFICANCE STATEMENT Humans need to detect patterns in the sensory world. For instance, speech is meaningful sequences of acoustic tokens easily differentiated from random ordered tokens. The structure derives from the predictability of the tokens. Similarly, mouse vocalization sequences have predictability and undergo context-dependent modulation. Our work investigated whether mice differentiate such informative predictable sequences (NSeqs) of communicative significance from RSeqs at the behavioral, molecular, and neuronal levels. Following a social experience in which NSeqs occur as a crucial component, mouse auditory cortical neurons become more sensitive to differences between NSeqs and RSeqs, although preference for individual tokens is unchanged. Thus, speech-like communication and its dysfunction may be studied in circuit, cellular, and molecular levels in mice.


Asunto(s)
Corteza Auditiva , Humanos , Animales , Ratones , Femenino , Masculino , Corteza Auditiva/fisiología , Ultrasonido/métodos , Vocalización Animal/fisiología , Neuronas
10.
J Cell Mol Med ; 28(17): e18578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234952

RESUMEN

Kruppel-like factor 4 (Klf4) is a transcription factor that is involved in neuronal regeneration and the development of glutamatergic systems. However, it is unknown whether Klf4 is involved in acute seizure. To investigate the potential role of Klf4 in pentylenetetrazol (PTZ)-induced seizure, western blotting, immunofluorescence, behaviour test and electrophysiology were conducted in this study. We found that Klf4 protein and mRNA expression were increased in both the hippocampus (HP) and prefrontal cortex (PFC) after PTZ-induced seizure in mice. HP-specific knockout (KO) of Klf4 in mice decreased protein expression of Klf4 and the down-stream Klf4 target tumour protein 53 (TP53/P53). These molecular changes are accompanied by increased seizure latency, reduced immobility time in the forced swimming test and tail suspension test. Reduced hippocampal protein levels for synaptic proteins, including glutamate receptor 1 (GRIA1/GLUA1) and postsynaptic density protein 95 (DLG4/PSD95), were also observed after Klf4-KO, while increased mRNA levels of complement proteins were observed for complement component 1q subcomponent A (C1qa), complement component 1q subcomponent B (C1qb), complement component 1q subcomponent C (C1qc), complement component 3 (C3), complement component 4A (C4a) and complement component 4B (C4b). Moreover, c-Fos expression induced by PTZ was reduced by hippocampal conditional KO of Klf4. Electrophysiology showed that PTZ-induced action potential frequency was decreased by overexpression of Klf4. In conclusion, these findings suggest that Klf4 plays an important role in regulating PTZ-induced seizures and therefore constitutes a new molecular target that should be explored for the development of antiepileptic drugs.


Asunto(s)
Hipocampo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Ratones Noqueados , Pentilenotetrazol , Convulsiones , Animales , Factor 4 Similar a Kruppel/metabolismo , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Hipocampo/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
J Cell Physiol ; 239(5): e31216, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327128

RESUMEN

c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.


Asunto(s)
Daño del ADN , Reparación del ADN , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-fos , Humanos , Reparación del ADN/genética , Daño del ADN/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
12.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780087

RESUMEN

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Asunto(s)
Giro Dentado , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Sacarosa , Animales , Masculino , Ratas , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Memoria/fisiología , Memoria/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Receptores AMPA/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , ARN Mensajero/metabolismo , Autoadministración , Sacarosa/administración & dosificación
13.
Mol Pain ; 20: 17448069241252385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38631845

RESUMEN

Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. It was a lab-based experimental study in which 60 female Sprague-Dawley rats; eight to 10 weeks old, weighing 150-300 gm were used. The rats were divided into two main groups: (i) superficial pain group (SG) (with skin incision only), (ii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., "tramadol, buprenorphine, and saline subgroups." Pain behavior was evaluated using the "Rat Grimace Scale" (RGS) at 2, 4, 6, 9 and 24 h post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count 2 hours postoperatively. Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p ≤ .05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p ≤ .05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p ≤ .05). Hence, a preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.


Asunto(s)
Modelos Animales de Enfermedad , Dolor Postoperatorio , Proteínas Proto-Oncogénicas c-fos , Ratas Sprague-Dawley , Útero , Animales , Femenino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Útero/cirugía , Útero/efectos de los fármacos , Anestesia General/métodos , Analgesia/métodos , Tramadol/farmacología , Tramadol/uso terapéutico , Dimensión del Dolor , Ratas , Anestesia Local/métodos , Conducta Animal/efectos de los fármacos , Buprenorfina/farmacología , Buprenorfina/uso terapéutico
14.
Curr Issues Mol Biol ; 46(7): 6885-6902, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39057053

RESUMEN

Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.

15.
Angiogenesis ; 27(3): 379-395, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38483712

RESUMEN

Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.


Asunto(s)
Proteína ADAM17 , Proteínas Proto-Oncogénicas c-fos , Neovascularización Retiniana , Animales , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratones , Humanos , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología , Retinopatía de la Prematuridad/genética , Ratones Endogámicos C57BL , Transcripción Genética , Regulación de la Expresión Génica , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Modelos Animales de Enfermedad , Angiogénesis
16.
Eur J Neurosci ; 59(5): 996-1015, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326849

RESUMEN

Basal amygdala (BA) neurons projecting to nucleus accumbens (NAc) core/shell are primarily glutamatergic and are integral to the circuitry of emotional processing. Several recent mouse studies have addressed whether neurons in this population(s) respond to reward, aversion or both emotional valences. The focus has been on processing of physical emotional stimuli, and here, we extend this to salient social stimuli. In male mice, an iterative study was conducted into engagement of BA-NAc neurons in response to estrous female (social reward, SR) and/or aggressive-dominant male (social aversion, SA). In BL/6J mice, SR and SA activated c-Fos expression in a high and similar number/density of BA-NAc neurons in the anteroposterior intermediate BA (int-BA), whereas activation was predominantly by SA in posterior (post-)BA. In Fos-TRAP2 mice, compared with SR-SR or SA-SA controls, exposure to successive presentation of SR-SA or SA-SR, followed by assessment of tdTomato reporter and/or c-Fos expression, demonstrated that many int-BA-NAc neurons were activated by only one of SR and SA; these SR/SA monovalent neurons were similar in number and present in both magnocellular and parvocellular int-BA subregions. In freely moving BL/6J mice exposed to SR, bulk GCaMP6 fibre photometry provided confirmatory in vivo evidence for engagement of int-BA-NAc neurons during social and sexual interactions. Therefore, populations of BA-NAc glutamate neurons are engaged by salient rewarding and aversive social stimuli in a topographic and valence-specific manner; this novel evidence is important to the overall understanding of the roles of this pathway in the circuitry of socio-emotional processing.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Proteína Fluorescente Roja , Ratones , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Ácido Glutámico/metabolismo , Neuronas/fisiología , Recompensa
17.
Eur J Neurosci ; 59(12): 3256-3272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644789

RESUMEN

Social buffering is the phenomenon in which the presence of an affiliative conspecific mitigates stress responses. We previously demonstrated that social buffering completely ameliorates conditioned fear responses in rats. However, the neuromodulators involved in social buffering are poorly understood. Given that opioids, dopamine, oxytocin and vasopressin play an important role in affiliative behaviour, here, we assessed the effects of the most well-known antagonists, naloxone (opioid receptor antagonist), haloperidol (dopamine D2 receptor antagonist), atosiban (oxytocin receptor antagonist) and SR49059 (vasopressin V1a receptor antagonist), on social buffering. In Experiment 1, fear-conditioned male subjects were intraperitoneally administered one of the four antagonists 25 min prior to exposure to a conditioned stimulus with an unfamiliar non-conditioned rat. Naloxone, but not the other three antagonists, increased freezing and decreased walking and investigation as compared with saline administration. In Experiment 2, identical naloxone administration did not affect locomotor activity, anxiety-like behaviour or freezing in an open-field test. In Experiment 3, after confirming that the same naloxone administration again increased conditioned fear responses, as done in Experiment 1, we measured Fos expression in 16 brain regions. Compared with saline, naloxone increased Fos expression in the paraventricular nucleus of the hypothalamus and decreased Fos expression in the nucleus accumbens shell, anterior cingulate cortex and insular cortex and tended to decrease Fos expression in the nucleus accumbens core. Based on these results, we suggest that naloxone blocks social buffering of conditioned fear responses in male rats.


Asunto(s)
Miedo , Naloxona , Antagonistas de Narcóticos , Animales , Masculino , Miedo/efectos de los fármacos , Miedo/fisiología , Naloxona/farmacología , Ratas , Antagonistas de Narcóticos/farmacología , Conducta Social , Condicionamiento Clásico/efectos de los fármacos , Ratas Wistar , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
18.
Biochem Biophys Res Commun ; 734: 150479, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39088982

RESUMEN

It is crucial to develop novel antidepressants. Dexmedetomidine (DEX) can exert antidepressant effects, but its underlying mechanism remains unclear. We used chronic restraint stress (CRS) to induce depression-like behaviour in mice and administered low-dose DEX (2 µg/kg per day) during CRS modelling or one injection of high-dose DEX (20 µg/kg) after CRS. The results of the behavioural tests revealed that both methods ameliorated CRS-induced depression. The brain slices of the mice were subjected to immunohistochemical staining for c-fos and phosphorylated ERK (pERK). Results showed that the continuous low-dose DEX-treated group, but not the single high-dose DEX-treated group expressed less c-fos in the nucleus locus coeruleus (LC) with a mean optical density (MOD) of 0.06. Other brain regions, including the dentate gyrus (DG), pyriform cortex (Pir), anterior part of paraventricular thalamic nucleus (PVA), arcuate nucleus (Arc), and core or shell of accumbens nucleus (Acbc or Acbs), presented differences in c-fos expression. In contrast, the low-dose DEX-treated group exhibited three-fold greater pERK expression in the LC of the CRS mice, with a MOD of 0.15. Pir, cingulate cortex (Cg) and, anterior and posterior part of paraventricular thalamic nucleus (PVA and PVP) exhibited pERK expression differences due to distinct reagent treatments. These changes indicate that the responses of brain regions to different DEX administration methods and doses vary. This study confirmed the ability of DEX to ameliorate CRS-induced depression and identified candidate target brain regions, thus providing new information for the antidepressant mechanism of DEX.

19.
Biochem Biophys Res Commun ; 726: 150251, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38936249

RESUMEN

Social behavior, defined as any mode of communication between conspecifics is regulated by a widespread network comprising multiple brain structures. The anterior cingulate cortex (ACC) serves as a hub region interconnected with several brain regions involved in social behavior. Because the ACC coordinates various behaviors, it is important to focus on a subpopulation of neurons that are potentially involved in social behavior to clarify the precise role of the ACC in social behavior. In this study, we aimed to analyze the roles of a social stimulus-responsive subpopulation of neurons in the ACC in social behavior in mice. We demonstrated that a subpopulation of neurons in the ACC was activated by social stimuli and that silencing the social stimulus-responsive subpopulation of neurons in the ACC significantly impaired social interaction without affecting locomotor activity or anxiety-like behavior. Our current findings highlight the importance of the social stimulus-responsive subpopulation of neurons in the ACC for social behavior and the association between ACC dysfunction and impaired social behavior, which sheds light on therapeutic interventions for psychiatric conditions.


Asunto(s)
Giro del Cíngulo , Ratones Endogámicos C57BL , Neuronas , Conducta Social , Animales , Giro del Cíngulo/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Ratones , Masculino , Ansiedad/fisiopatología , Conducta Animal/fisiología
20.
Neurobiol Learn Mem ; 213: 107942, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38815677

RESUMEN

The amygdala has been implicated in frustrative nonreward induced by unexpected reward downshifts, using paradigms like consummatory successive negative contrast (cSNC). However, existing evidence comes from experiments involving the central and basolateral nuclei on a broad level. Moreover, whether the amygdala's involvement in reward downshift requires a cSNC effect (i.e., greater suppression in downshifted animals than in unshifted controls) or just consummatory suppression without a cSNC effect, remains unclear. Three groups were exposed to (1) a large reward disparity leading to a cSNC effect (32-to-2% sucrose), (2) a small reward disparity involving consummatory suppression in the absence of a cSNC effect (8-to-2% sucrose), and (3) an unshifted control (2% sucrose). Brains obtained after the first reward downshift session were processed for c-Fos expression, a protein often used as a marker for neural activation. c-Fos-positive cells were counted in the anterior, medial, and posterior portions (A/P axis) of ten regions of the rat basolateral, central, and medial amygdala. c-Fos expression was higher in 32-to-2% sucrose downshift animals than in the other two groups in four regions: the anterior and the medial lateral basal amygdala, the medial capsular central amygdala, and the anterior anterio-ventral medial amygdala. None of the areas exhibited differential c-Fos expression between the 8-to-2% sucrose downshift and the unshifted conditions. Thus, amygdala activation requires exposure to a substantial reward disparity. This approach has identified, for the first time, specific amygdala areas relevant to understand the cSNC effect, suggesting follow-up experiments aimed at testing the function of these regions in reward downshift.


Asunto(s)
Amígdala del Cerebelo , Proteínas Proto-Oncogénicas c-fos , Recompensa , Animales , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Masculino , Ratas , Ratas Wistar , Conducta Consumatoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA