Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(4): 700-717, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599166

RESUMEN

C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.


Asunto(s)
Lectinas Tipo C , Neoplasias , Humanos , Lectinas Tipo C/metabolismo , Inmunidad Innata , Células Mieloides/metabolismo , Transducción de Señal , Neoplasias/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
2.
Immunity ; 54(3): 484-498.e8, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33581044

RESUMEN

Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.


Asunto(s)
Astrocitos/inmunología , Encéfalo/patología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Lectinas Tipo C/metabolismo , Esclerosis Múltiple/inmunología , Células Mieloides/inmunología , Inflamación Neurogénica/inmunología , Receptores Mitogénicos/metabolismo , Animales , Comunicación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Galectinas/metabolismo , Regulación de la Expresión Génica , Lectinas Tipo C/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/inmunología , Oncostatina M/genética , Oncostatina M/metabolismo , Subunidad beta del Receptor de Oncostatina M/metabolismo , Fragmentos de Péptidos/inmunología , Receptores Mitogénicos/genética , Transducción de Señal
3.
Immunity ; 52(1): 123-135.e6, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31859049

RESUMEN

The immune system monitors the health of cells and is stimulated by necrosis. Here we examined the receptors and ligands driving this response. In a targeted screen of C-type lectin receptors, a Clec2d reporter responded to lysates from necrotic cells. Biochemical purification identified histones, both free and bound to nucleosomes or neutrophil extracellular traps, as Clec2d ligands. Clec2d recognized poly-basic sequences in histone tails and this recognition was sensitive to post-translational modifications of these sequences. As compared with WT mice, Clec2d-/- mice exhibited reduced proinflammatory responses to injected histones, and less tissue damage and improved survival in a hepatotoxic injury model. In macrophages, Clec2d localized to the plasma membrane and endosomes. Histone binding to Clec2d did not stimulate kinase activation or cytokine production. Rather, histone-bound DNA stimulated endosomal Tlr9-dependent responses in a Clec2d-dependent manner. Thus, Clec2d binds to histones released upon necrotic cell death, with functional consequences to inflammation and tissue damage.


Asunto(s)
Histonas/metabolismo , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Hígado/lesiones , Necrosis/patología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis/inmunología , Endosomas/metabolismo , Células HEK293 , Humanos , Células Jurkat , Lectinas Tipo C/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Receptores de Superficie Celular/genética , Receptor Toll-Like 9/inmunología
4.
Proc Natl Acad Sci U S A ; 120(33): e2211019120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552757

RESUMEN

Polymorphisms in immunity genes can have large effects on susceptibility to infection. To understand the origins of this variation, we have investigated the genetic basis of resistance to the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster. We found that increased expression of the gene lectin-24A after infection by parasitic wasps was associated with a faster cellular immune response and greatly increased rates of killing the parasite. lectin-24A encodes a protein that is strongly up-regulated in the fat body after infection and localizes to the surface of the parasite egg. In certain susceptible lines, a deletion upstream of the lectin-24A has largely abolished expression. Other mutations predicted to abolish the function of this gene have arisen recurrently in this gene, with multiple loss-of-expression alleles and premature stop codons segregating in natural populations. The frequency of these alleles varies greatly geographically, and in some southern African populations, natural selection has driven them near to fixation. We conclude that natural selection has favored the repeated loss of an important component of the immune system, suggesting that in some populations, a pleiotropic cost to lectin-24A expression outweighs the benefits of resistance.


Asunto(s)
Parásitos , Avispas , Animales , Drosophila/genética , Drosophila melanogaster/genética , Interacciones Huésped-Parásitos , Avispas/fisiología , Lectinas/genética , Selección Genética
5.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367667

RESUMEN

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Asunto(s)
Lectinas Tipo C , Receptores Mitogénicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/inmunología , Receptores Mitogénicos/química , Receptores Mitogénicos/inmunología , Ácido Úrico/química , Ácido Úrico/inmunología , Dominios Proteicos , Cristalografía por Rayos X , Imagen Individual de Molécula , Línea Celular
6.
Eur J Immunol ; 54(4): e2250318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072999

RESUMEN

Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.


Asunto(s)
Técnicas Biosensibles , Inmunidad Innata , Humanos , Inmunoensayo , Células Asesinas Naturales , Lectinas Tipo C/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(30): e2120489119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867828

RESUMEN

Cellular lipid uptake (through endocytosis) is a basic physiological process. Dysregulation of this process underlies the pathogenesis of diseases such as atherosclerosis, obesity, diabetes, and cancer. However, to date, only some mechanisms of lipid endocytosis have been discovered. Here, we show a previously unknown mechanism of lipid cargo uptake into cells mediated by the receptor Mincle. We found that the receptor Mincle, previously shown to be a pattern recognition receptor of the innate immune system, tightly binds a range of self-lipids. Moreover, we revealed the minimal molecular motif in lipids that is sufficient for Mincle recognition. Superresolution microscopy showed that Mincle forms vesicles in cytoplasm and colocalizes with added fluorescent lipids in endothelial cells but does not colocalize with either clathrin or caveolin-1, and the added lipids were predominantly incorporated in vesicles that expressed Mincle. Using a model of ganglioside GM3 uptake in brain vessel endothelial cells, we show that the knockout of Mincle led to a dramatic decrease in lipid endocytosis. Taken together, our results have revealed a fundamental lipid endocytosis pathway, which we call Mincle-mediated endocytosis (MiME), and indicate a prospective target for the treatment of disorders of lipid metabolism, which are rapidly increasing in prevalence.


Asunto(s)
Endocitosis , Lectinas Tipo C , Metabolismo de los Lípidos , Proteínas de la Membrana , Animales , Transporte Biológico/genética , Transporte Biológico/fisiología , Endocitosis/genética , Endocitosis/fisiología , Células Endoteliales/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lípidos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones
8.
BMC Biol ; 22(1): 54, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448930

RESUMEN

BACKGROUND: Gut bacteria are beneficial to the host, many of which must be passed on to host offspring. During metamorphosis, the midgut of holometabolous insects undergoes histolysis and remodeling, and thus risks losing gut bacteria. Strategies employed by holometabolous insects to minimize this risk are obscure. How gut bacteria affect host insects after entering the hemocoel and causing opportunistic infections remains largely elusive. RESULTS: We used holometabolous Helicoverpa armigera as a model and found low Lactobacillus load, high level of a C-type lectin (CTL) gene CD209 antigen-like protein 2 (CD209) and its downstream lysozyme 1 (Lys1) in the midgut of the wandering stage. CD209 or Lys1 depletion increased the load of midgut Lactobacillus, which further translocate to the hemocoel. In particular, CD209 or Lys1 depletion, injection of Lactobacillus plantarum, or translocation of midgut L. plantarum into the hemocoel suppressed 20-hydroxyecdysone (20E) signaling and delayed pupariation. Injection of L. plantarum decreased triacylglycerol and cholesterol storage, which may result in insufficient energy and 20E available for pupariation. Further, Lysine-type peptidoglycan, the major component of gram-positive bacterial cell wall, contributed to delayed pupariation and decreased levels of triacylglycerols, cholesterols, and 20E, in both H. armigera and Drosophila melanogaster. CONCLUSIONS: A mechanism by which (Lactobacillus-induced) opportunistic infections delay insect metamorphosis was found, namely by disturbing the homeostasis of lipid metabolism and reducing 20E production. Moreover, the immune function of CTL - Lys was characterized for insect metamorphosis by maintaining gut homeostasis and limiting the opportunistic infections.


Asunto(s)
Microbioma Gastrointestinal , Lisina , Animales , Drosophila melanogaster , Disbiosis , Bacterias , Inmunidad
9.
Immunology ; 171(2): 286-311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991344

RESUMEN

Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.


Asunto(s)
Lectinas Tipo C , Melanoma , Masculino , Humanos , Células Dendríticas , Glicoproteínas , Receptores Toll-Like/metabolismo , Polisacáridos/metabolismo
10.
Angiogenesis ; 27(2): 173-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38468017

RESUMEN

C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.


Asunto(s)
Lectinas Tipo C , Neoplasias , Humanos , Angiogénesis , Neovascularización Patológica/patología , Neoplasias/tratamiento farmacológico , Transducción de Señal , Antígenos de Neoplasias , Antígenos CD
11.
Angiogenesis ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878257

RESUMEN

Snake venoms are intricate mixtures of enzymes and bioactive factors that induce a range of detrimental effects in afflicted hosts. Certain Viperids, including Bothrops jararacussu, harbor C-type lectins (CTLs) known for their modulation of a variety of host cellular responses. In this study, we isolated and purified BjcuL, a CTL from B. jararacussu venom and investigated its impact on endothelial cell behavior, contrasting it with human galectin-1 (Gal-1), a prototype member of the galectin family with shared ß-galactoside-binding activity. We found that BjcuL binds to human dermal microvascular endothelial cells (HMECs) in a concentration- and carbohydrate-dependent fashion and reprograms the function of these cells, favoring a pro-inflammatory and pro-coagulant endothelial phenotype. In light of the quest for universal antagonists capable of mitigating the harmful consequences of snake venoms, BjcuL emerges as a promising target to be blocked in order to regulate pathological endothelial cell responses.

12.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608490

RESUMEN

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilación , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular , Células HL-60 , Línea Celular Tumoral
13.
Immunol Cell Biol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757764

RESUMEN

Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.

14.
Chembiochem ; 25(9): e202400026, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506247

RESUMEN

In this work, we have discovered that the Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc.


Asunto(s)
Lectinas Tipo C , Receptores Inmunológicos , Trisacáridos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Trisacáridos/química , Trisacáridos/síntesis química , Ligandos , Estereoisomerismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
15.
BMC Cancer ; 24(1): 19, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167030

RESUMEN

BACKGROUND: GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM. METHODS: To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models. RESULTS: Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth. CONCLUSIONS: To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.


Asunto(s)
Glioblastoma , Glioma , Lectinas Tipo C , Animales , Humanos , Ratas , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/metabolismo , Glioma/patología , Proteínas Ligadas a GPI/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
16.
EMBO Rep ; 23(11): e55671, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197120

RESUMEN

Frequent turnover of dengue virus (DENV) clades is one of the major forces driving DENV persistence and prevalence. In this study, we assess the fitness advantage of nine stable substitutions within the envelope (E) protein of DENV serotypes. Two tandem neighboring substitutions, threonine to lysine at the 226th (T226K) and glycine to glutamic acid at the 228th (G228E) residues in the DENV2 Asian I genotype, enhance virus infectivity in either mosquitoes or mammalian hosts, thereby promoting clades turnover and dengue epidemics. Mechanistic studies indicate that the substitution-mediated polarity changes in these two residues increase the binding affinity of E for host C-type lectins. Accordingly, we predict that a G228E substitution could potentially result in a forthcoming epidemic of the DENV2 Cosmopolitan genotype. Investigations into the substitutions associated with DENV fitness in hosts may offer mechanistic insights into dengue prevalence, thus providing a warning of potential epidemics in the future.


Asunto(s)
Virus del Dengue , Dengue , Animales , Virus del Dengue/genética , Dengue/epidemiología , Filogenia , Serogrupo , Genotipo , Mutación , Mamíferos
17.
Fish Shellfish Immunol ; 145: 109346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163494

RESUMEN

C-type lectins (CTLs) are important immune molecules in innate immune, which participate in non-self recognition and clearance of pathogens. Here, a new CTL with two distinct C-type lectin domains (CTLDs) from Pacific white shrimp Penaeus vannamei, designated as PvMR1 was identified. The obtained PvMR1 coding sequence (CDS) was 1044 bp long encoding a protein with 347 amino acids. PvMR1 had two CTLD, a conserved mannose-specific EPN motif and a galactose-specific QPD motif, clustering into the same branch as the crustacean CTLs. PvMR1 was widely distributed in shrimp tissues with the highest transcription level in the hepatopancreas, with significantly induced mRNA expression on the hepatopancreas and intestines after immune challenge with Vibrio anguillarum. In vitro assays with recombinant PvMR1 (rPvMR1) protein revealed that it exhibited a wide range of antimicrobial activity, bacterial binding ability, and bacterial agglutination activity in a Ca2+-independent manner. Moreover, PvMR1 promoted bacterial phagocytosis in hemocytes. Furthermore, rPvMR1 treatment could significantly enhance the bacterial clearance in hemolymph and greatly improved the survival of shrimp under V. anguillarum infection in vivo. These results collectively suggest that PvMR1 plays an important role in antibacterial immune response of P. vannamei.


Asunto(s)
Lectinas Tipo C , Penaeidae , Animales , Lectinas Tipo C/genética , Secuencia de Bases , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Recombinantes/genética , Fagocitosis , Inmunidad Innata/genética , Proteínas de Artrópodos/genética , Filogenia
18.
Fish Shellfish Immunol ; 150: 109636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762095

RESUMEN

As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1ß, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Lectinas Tipo C , Macrófagos , Perciformes , Receptores de Reconocimiento de Patrones , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Macrófagos/inmunología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Perciformes/inmunología , Perciformes/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Peces/inmunología , Peces/genética
19.
Fish Shellfish Immunol ; 150: 109638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754650

RESUMEN

C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight ß-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Inmunidad Innata , Lectinas Tipo C , Penaeidae , Filogenia , Alineación de Secuencia , Vibrio , Virus del Síndrome de la Mancha Blanca 1 , Animales , Penaeidae/inmunología , Penaeidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/química , Inmunidad Innata/genética , Vibrio/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Alineación de Secuencia/veterinaria , Virus del Síndrome de la Mancha Blanca 1/fisiología , Secuencia de Bases , Calcio/metabolismo , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria
20.
Fish Shellfish Immunol ; 151: 109721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917950

RESUMEN

C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Inmunidad Innata , Lectinas Tipo C , Palaemonidae , Filogenia , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Palaemonidae/inmunología , Palaemonidae/genética , Vibrio parahaemolyticus/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/química , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica , Alineación de Secuencia , Secuencia de Bases , Secuencias Repetidas en Tándem/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA