Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(4): 1584-1599, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38899346

RESUMEN

PURPOSE: To develop multiphoton excitation techniques for simultaneous multislice (SMS) imaging and evaluate their performance and specific absorption rate (SAR) benefit. To improve multiphoton SMS reconstruction quality with a novel CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) design. THEORY AND METHODS: When a conventional single-slice RF field is applied together with an oscillating gradient field, the two can combine to generate multiphoton excitation at multiple discrete spatial locations. Because the conventional RF is reused at multiple spatial locations, multiphoton excitation offers reduced SAR for SMS applications. CAIPIRINHA shifts are often used to improve parallel-imaging acceleration. Interestingly, CAIPIRINHA-type shifts can be obtained for multiphoton SMS by updating the oscillating gradient phase at every phase encode. In this work, both a gradient-echo and a spin-echo sequence with multiphoton CAIPIRINHA-SMS excitation pulses are implemented for in vivo human imaging at 3 T. RESULTS: For three slices, multiphoton SMS provides a 51% reduction in SAR compared with conventional superposition SMS, whereas for five slices, SAR is reduced by 66%. Multiphoton SMS outperforms PINS (power independent of number of slices) and MultiPINS in terms of SAR reduction especially when the pulse duration is short, slices are thin, and/or the slice spacing is large. A custom CAIPIRINHA phase-encoding design for multiphoton SMS significantly improves reconstruction quality. CONCLUSION: Multiphoton SMS excitation can be obtained by combining conventional single-slice RF pulses with an oscillating gradient and offers significant SAR benefits compared with conventional superposition SMS. A novel CAIPIRINHA design allows higher multiband factors for multiphoton SMS imaging.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen
2.
Magn Reson Med ; 92(3): 997-1010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38778631

RESUMEN

PURPOSE: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions. In this work, we use a multishot 3D echo plannar imaging (3D EPI) sequence with shot-selective 2D CAIPIRIHANA to acquire high-resolution, whole-brain data for QSM with minimal distortion and blurring. METHODS: To test clinical viability, the 3D EPI sequence was used to image a cohort of MS patients at 1-mm isotropic resolution at 3 T. Additionally, 3D EPI data of healthy subjects were acquired at 1-mm, 0.78-mm, and 0.65-mm isotropic resolution with varying echo train lengths (ETLs) and compared with a reference 3D GRE acquisition. RESULTS: The appearance of the susceptibility maps and the susceptibility values for segmented regions of interest were comparable between 3D EPI and 3D GRE acquisitions for both healthy and MS participants. Additionally, all lesions visible in the MS patients on the 3D GRE susceptibility maps were also visible on the 3D EPI susceptibility maps. The interplay among acquisition time, resolution, echo train length, and the effect of distortion on the calculated susceptibility maps was investigated. CONCLUSION: We demonstrate that the 3D EPI sequence is capable of rapidly acquiring submillimeter resolutions and providing high-quality, clinically relevant susceptibility maps.


Asunto(s)
Encéfalo , Imagen Eco-Planar , Imagenología Tridimensional , Esclerosis Múltiple , Humanos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Adulto , Masculino , Femenino , Algoritmos , Persona de Mediana Edad , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
3.
Magn Reson Med ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988040

RESUMEN

PURPOSE: To explore the high signal-to-noise ratio (SNR) efficiency of interleaved multishot 3D-EPI with standard image reconstruction for fast and robust high-resolution whole-brain quantitative susceptibility (QSM) and R 2 ∗ $$ {R}_2^{\ast } $$ mapping at 7 and 3T. METHODS: Single- and multi-TE segmented 3D-EPI is combined with conventional CAIPIRINHA undersampling for up to 72-fold effective gradient echo (GRE) imaging acceleration. Across multiple averages, scan parameters are varied (e.g., dual-polarity frequency-encoding) to additionally correct for B 0 $$ {\mathrm{B}}_0 $$ -induced artifacts, geometric distortions and motion retrospectively. A comparison to established GRE protocols is made. Resolutions range from 1.4 mm isotropic (1 multi-TE average in 36 s) up to 0.4 mm isotropic (2 single-TE averages in approximately 6 min) with whole-head coverage. RESULTS: Only 1-4 averages are needed for sufficient SNR with 3D-EPI, depending on resolution and field strength. Fast scanning and small voxels together with retrospective corrections result in substantially reduced image artifacts, which improves susceptibility and R 2 ∗ $$ {R}_2^{\ast } $$ mapping. Additionally, much finer details are obtained in susceptibility-weighted image projections through significantly reduced partial voluming. CONCLUSION: Using interleaved multishot 3D-EPI, single-TE and multi-TE data can readily be acquired 10 times faster than with conventional, accelerated GRE imaging. Even 0.4 mm isotropic whole-head QSM within 6 min becomes feasible at 7T. At 3T, motion-robust 0.8 mm isotropic whole-brain QSM and R 2 ∗ $$ {R}_2^{\ast } $$ mapping with no apparent distortion in less than 7 min becomes clinically feasible. Stronger gradient systems may allow for even higher effective acceleration rates through larger EPI factors while maintaining optimal contrast.

4.
Eur Radiol ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492004

RESUMEN

OBJECTIVE: To investigate whether a deep learning (DL) controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE) technique can improve image quality, lesion conspicuity, and lesion detection compared to a standard CAIPIRINHA-VIBE technique in gadoxetic acid-enhanced liver MRI. METHODS: This retrospective single-center study included 168 patients who underwent gadoxetic acid-enhanced liver MRI at 3 T using both standard CAIPIRINHA-VIBE and DL CAIPIRINHA-VIBE techniques on pre-contrast and hepatobiliary phase (HBP) images. Additionally, high-resolution (HR) DL CAIPIRINHA-VIBE was obtained with 1-mm slice thickness on the HBP. Three abdominal radiologists independently assessed the image quality and lesion conspicuity of pre-contrast and HBP images. Statistical analyses involved the Wilcoxon signed-rank test for image quality assessment and the generalized estimation equation for lesion conspicuity and detection evaluation. RESULTS: DL and HR-DL CAIPIRINHA-VIBE demonstrated significantly improved overall image quality and reduced artifacts on pre-contrast and HBP images compared to standard CAIPIRINHA-VIBE (p < 0.001), with a shorter acquisition time (DL vs standard, 11 s vs 17 s). However, the former presented a more synthetic appearance (both p < 0.05). HR-DL CAIPIRINHA-VIBE showed superior lesion conspicuity to standard and DL CAIPIRINHA-VIBE on HBP images (p < 0.001). Moreover, HR-DL CAIPIRINHA-VIBE exhibited a significantly higher detection rate of small (< 2 cm) solid focal liver lesions (FLLs) on HBP images compared to standard CAIPIRINHA-VIBE (92.5% vs 87.4%; odds ratio = 1.83; p = 0.036). CONCLUSION: DL and HR-DL CAIPIRINHA-VIBE achieved superior image quality compared to standard CAIPIRINHA-VIBE. Additionally, HR-DL CAIPIRINHA-VIBE improved the lesion conspicuity and detection of small solid FLLs. DL and HR-DL CAIPIRINHA-VIBE hold the potential clinical utility for gadoxetic acid-enhanced liver MRI. CLINICAL RELEVANCE STATEMENT: DL and HR-DL CAIPIRINHA-VIBE hold promise as potential alternatives to standard CAIPIRINHA-VIBE in routine clinical liver MRI, improving the image quality and lesion conspicuity, enhancing the detection of small (< 2 cm) solid focal liver lesions, and reducing the acquisition time. KEY POINTS: • DL and HR-DL CAIPIRINHA-VIBE demonstrated improved overall image quality and reduced artifacts on pre-contrast and HBP images compared to standard CAIPIRINHA-VIBE, in addition to a shorter acquisition time. • DL and HR-DL CAIPIRINHA-VIBE yielded a more synthetic appearance than standard CAIPIRINHA-VIBE. • HR-DL CAIPIRINHA-VIBE showed improved lesion conspicuity than standard CAIPIRINHA-VIBE on HBP images, with a higher detection of small (< 2 cm) solid focal liver lesions.

5.
Magn Reson Med ; 90(4): 1380-1395, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37246893

RESUMEN

PURPOSE: To propose an acceleration method for 3D variable flip-angle (VFA) T1 mapping based on a technique called shift undersampling improves parametric mapping efficiency and resolution (SUPER). METHODS: The proposed method incorporates strategies of SUPER, controlled aliasing in volumetric parallel imaging (CAIPIRINHA), and total variation-based regularization to accelerate 3D VFA T1 mapping. The k-space sampling grid of CAIPIRINHA is internally undersampled with SUPER along the contrast dimension. A proximal algorithm was developed to preserve the computational efficiency of SUPER in the presence of regularization. The regularized SUPER-CAIPIRINHA (rSUPER-CAIPIRINHA) was compared with low rank plus sparsity (L + S), reconstruction of principal component coefficient maps (REPCOM), and other SUPER-based methods via simulations and in vivo brain T1 mapping. The results were assessed quantitatively with NRMSE and structural similarity index measure (SSIM), and qualitatively by two experienced reviewers. RESULTS: rSUPER-CAIPIRINHA achieved a lower NRMSE and higher SSIM than L + S (0.11 ± 0.01 vs. 0.19 ± 0.03, p < 0.001; 0.66 ± 0.05 vs. 0.37 ± 0.03, p < 0.001) and REPCOM (0.16 ± 0.02, p < 0.001; 0.46 ± 0.04, p < 0.001). The reconstruction time of rSUPER-CAIPIRINHA was 6% of L + S and 2% of REPCOM. For the qualitative comparison, rSUPER-CAIPIRINHA showed improvement of overall image quality and reductions of artifacts and blurring, although with a lower apparent SNR. Compared with 2D SUPER-SENSE, rSUPER-CAIPIRINHA significantly reduced NRMSE (0.11 ± 0.01 vs. 0.23 ± 0.04, p < 0.001) and generated less noisy reconstructions. CONCLUSION: By incorporating SUPER, CAIPIRINHA, and regularization, rSUPER-CAIPIRINHA mitigated noise amplification, reduced artifacts and blurring, and achieved faster reconstructions compared with L + S and REPCOM. These advantages render 3D rSUPER-CAIPIRINHA VFA T1 mapping potentially useful for clinical applications.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Acta Radiol ; 64(7): 2277-2282, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34854744

RESUMEN

BACKGROUND: Data regarding controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) T2-weighted sampling perfection with application optimized contrast evolution (SPACE) with fourfold acceleration factor for assessing long head of biceps tendon (LHBT) disorder is lacking. PURPOSE: To investigate the feasibility of 3D CAIPIRINHA SPACE with fourfold acceleration in assessing LHBT disorder. MATERIAL AND METHODS: A total of 42 consecutive patients underwent shoulder magnetic resonance (MR) examinations including CAIPIRINHA SPACE with fourfold acceleration, and non-CAIPIRINHA SPACE with twofold acceleration, and 2D fast spin echo (FSE). A subjective score of depiction of LHBT was given to 3D sequence according to a 4-point scale (0-3, "poor" to "excellent"). The Wilcoxon signed rank test was used to compare depiction scores between 3D sequences. Three statuses of LHBT were defined in the study: normal, tendonitis, and tear. McNemar's test was used compare diagnostic accuracy. RESULTS: LHBT was better depicted with CAIPIRINHA SPACE versus non-CAIPIRINHA SPACE (2.1 ± 0.4 vs. 1.5 ± 0.4; P < 0.001). Inter-modality agreement between CAIPIRINHA SPACE and 2D FSE was almost perfect (kappa = 0.884 ± 0.064). The sensitivity and specificity in detecting LHBT disorder were 95% (20/21) and 95% (20/21), respectively, for CAIPIRINHA SPACE, and 71% (15/21) and 76% (16/21), respectively, for non-CAIPIRINHA SPACE (P = 0.039). CONCLUSION: Fourfold acceleration CAIPIRINHA is feasible in reducing the acquisition time of SPACE MR in the shoulder. 3D CAIPIRINHA SPACE with fourfold acceleration is highly accurate in detecting LHBT disorder.


Asunto(s)
Imagenología Tridimensional , Enfermedades Musculoesqueléticas , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Tendones/diagnóstico por imagen , Sensibilidad y Especificidad , Aceleración , Espectroscopía de Resonancia Magnética
7.
Magn Reson Med ; 88(2): 840-848, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35403235

RESUMEN

PURPOSE: To reduce scan time, methods to accelerate phase-encoded/non-Cartesian MR fingerprinting (MRF) acquisitions for variable density spiral acquisitions have recently been developed. These methods are not applicable to MRF acquisitions, wherein a single k-space spoke is acquired per frame. Therefore, we propose a low-rank inversion method to resolve MRF contrast dynamics from through-plane accelerated Cartesian/radial measurements applied to quantitative relaxation-time mapping on a 0.35T system. METHODS: An algorithm was implemented to reconstruct through-plane aliased low-rank images describing the contrast dynamics occurring because of the transient-state MRF acquisition. T1 and T2 times from accelerated acquisitions were compared with those from unaccelerated linear reconstructions in a standardized system phantom and within in vivo brain and prostate experiments on a hybrid 0.35T MRI/linear accelerator. RESULTS: No significant differences between T1 and T2 times for the accelerated reconstructions were observed compared to fully sampled acquisitions (p = 0.41 and p = 0.36, respectively). The mean absolute errors in T1 and T2 were 5.6% and 2.9%, respectively, between the full and accelerated acquisitions. The SDs in T1 and T2 decreased with the advanced accelerated reconstruction compared with the unaccelerated reconstruction (p = 0.02 and p = 0.03, respectively). The quality of the T1 and T2 maps generated with the proposed approach are comparable to those obtained using the unaccelerated data sets. CONCLUSIONS: Through-plane accelerated MRF with radial k-space coverage was demonstrated at a low field strength of 0.35 T. This method enabled 3D T1 and T2 mapping at 0.35 T with a 3-min scan.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Fantasmas de Imagen
8.
Eur Radiol ; 32(12): 8670-8680, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35751699

RESUMEN

OBJECTIVES: To test whether a 4-fold accelerated 3D T2-weighted (T2) CAIPIRINHA SPACE TSE sequence with isotropic voxel size is equivalent to conventional 2DT2 TSE for the evaluation of intrinsic and perilesional soft tissue tumors (STT) characteristics. METHODS: For 108 patients with histologically-proven STTs, MRI, including 3DT2 (CAIPIRINHA SPACE TSE) and 2DT2 (TSE) sequences, was performed. Two radiologists evaluated each sequence for quality (diagnostic, non-diagnostic), tumor characteristics (heterogeneity, signal intensity, margin), and the presence or absence of cortical involvement, marrow edema, and perilesional edema (PLE); tumor size and PLE extent were measured. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios and acquisition times for 2DT2 in two planes and 3DT2 sequences were reported. Descriptive statistics and inter-method agreement were reported. RESULTS: Image quality was diagnostic for all sequences (100% [108/108]). No difference was observed between 3DT2 and 2DT2 tumor characteristics (p < 0.05). There was no difference in mean tumor size (3DT2: 2.9 ± 2.5 cm, 2DT2: 2.8 ± 2.6 cm, p = 0.4) or PLE extent (3DT2:0.5 ± 1.2 cm, 2DT2:0.5 ± 1.0 cm, p = 0.9) between the sequences. There was no difference in the SNR of tumors, marrow, and fat between the sequences, whereas the SNR of muscle was higher (p < 0.05) on 3DT2 than 2DT2. CNR measures on 3DT2 were similar to 2DT2 (p > 0.1). The average acquisition time was shorter for 3DT2 compared with 2DT2 (343 ± 127 s vs 475 ± 162 s, respectively). CONCLUSION: Isotropic 3DT2 MRI offers higher spatial resolution, faster acquisition times, and equivalent assessments of STT characteristics compared to conventional 2DT2 MRI in two planes. 3DT2 is interchangeable with a 2DT2 sequence in tumor protocols. KEY POINTS: • Isotropic 3DT2 CAIPIRINHA SPACE TSE offers higher spatial resolution than 2DT2 TSE and is equivalent to 2DT2 TSE for assessments of soft tissue tumor intrinsic and perilesional characteristics. • Multiplanar reformats of 3DT2 CAIPIRINHA SPACE TSE can substitute for 2DT2 TSE acquired in multiple planes, thereby reducing the acquisition time of MRI tumor protocols. • 3DT2 CAIPIRINHA SPACE TSE and 2DT2 TSE had similar CNR of tissues.


Asunto(s)
Imagenología Tridimensional , Neoplasias de los Tejidos Blandos , Humanos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Neoplasias de los Tejidos Blandos/diagnóstico por imagen
9.
Magn Reson Med ; 85(3): 1540-1551, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32936488

RESUMEN

PURPOSE: A segmented k-space blipped-controlled aliasing in parallel imaging (skipped-CAIPI) sampling strategy for EPI is proposed, which allows for a flexible choice of EPI factor and phase encode bandwidth independent of the controlled aliasing in parallel imaging (CAIPI) sampling pattern. THEORY AND METHODS: With previously proposed approaches, exactly two EPI trajectories were possible given a specific CAIPI pattern, either with slice gradient blips (blipped-CAIPI) or following a shot-selective CAIPI approach (higher resolution). Recently, interleaved multi-shot segmentation along shot-selective CAIPI trajectories has been applied for high-resolution anatomical imaging. For more flexibility and a broader range of applications, we propose segmentation along any blipped-CAIPI trajectory. Thus, all EPI factors and phase encode bandwidths available with traditional segmented EPI can be combined with controlled aliasing. RESULTS: Temporal SNR maps of moderate-to-high-resolution time series acquisitions at varying undersampling factors demonstrate beneficial sampling alternatives to blipped-CAIPI or shot-selective CAIPI. Rapid high-resolution scans furthermore demonstrate SNR-efficient and motion-robust structural imaging with almost arbitrary EPI factor and minimal noise penalty. CONCLUSION: Skipped-CAIPI sampling increases protocol flexibility for high spatiotemporal resolution EPI. In terms of SNR and efficiency, high-resolution functional or structural scans benefit vastly from a free choice of the CAIPI pattern. Even at moderate resolutions, the independence of sampling pattern, TE, and image matrix size is valuable for optimized functional protocol design. Although demonstrated with 3D-EPI, skipped-CAIPI is also applicable with simultaneous multislice EPI.


Asunto(s)
Aumento de la Imagen , Interpretación de Imagen Asistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional
10.
Neuroimage ; 206: 116337, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707191

RESUMEN

For ASL perfusion imaging in clinical settings the current guidelines recommends pseudo-continuous arterial spin labeling with segmented 3D readout. This combination achieves the best signal to noise ratio with reasonable resolution but is prone to motion artifacts due to the segmented readout. Motion robust single-shot 3D acquisitions suffer from image blurring due to the T2 decay of the sampled signals during the long readout. To tackle this problem, we propose an accelerated 3D-GRASE sequence with a time-dependent 2D-CAIPIRINHA sampling pattern. This has several advantages: First, the single-shot echo trains are shortened by the acceleration factor; Second, the temporal incoherence between measurements is increased; And third, the coil sensitivity maps can be estimated directly from the averaged k-space data. To obtain improved perfusion images from the undersampled time series, we developed a variational image reconstruction approach employing spatio-temporal total-generalized-variation (TGV) regularization. The proposed ASL-TGV method reduced the total acquisition time, improved the motion robustness of 3D ASL data, and the image quality of the cerebral blood flow (CBF) maps compared to those by a standard segmented approach. An evaluation was performed on 5 healthy subjects including intentional movement for 2 subjects. Single-shot whole brain CBF-maps with high resolution 3.1 × 3.1 × 3 mm and image quality can be acquired in 1min 46sec. Additionally high quality CBF- and arterial transit time (ATT) -maps from single-shot multi-post-labeling delay (PLD) data can be gained with the proposed method. This method may improve the robustness of 3D ASL in clinical settings, and may be applied for perfusion fMRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Adulto , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Femenino , Humanos , Masculino , Relación Señal-Ruido , Marcadores de Spin
11.
Magn Reson Med ; 84(2): 866-872, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31967342

RESUMEN

PURPOSE: To introduce a modified 3D stack-of-spirals trajectory and efficient SENSE reconstruction for improved through-plane undersampling, while maintaining SNR efficiency and other benefits of spiral acquisitions. METHODS: A novel spiral staircase trajectory is introduced. This trajectory is a modified stack of spirals, in which spiral arms are distributed between partitions along kz . The trajectory maintains the efficient separable reconstruction with a Cartesian fast Fourier transform along the kz direction, followed by a 2D slice-by-slice gridding reconstruction. An additional intermediate step introduces a phase correction to collapse the spiral arms into the prescribed slice planes. For data undersampled through plane, this produces aliasing with reduced coherence, controlled by the arm-ordering. Undersampled data can then be reconstructed with reduced g-factor using a conjugate gradient-based iterative SENSE algorithm. RESULTS: The trajectory significantly improves g-factor for through-plane accelerated acquisitions. Improvement manifests through both reduced overall g-factor and reduced structure in the g-factor maps. In the presented experiments, the mean g-factor decreased from 1.26 to 0.93 and the maximum g-factor decreased from 3.89 to 1.15 for R = 2 spiral staircase when compared with stack of spirals, and the mean g-factor decreased from 2.51 to 0.94 and the maximum g-factor decreased from 8.26 to 1.35 for R = 3 spiral staircase when compared with stack of spirals. CONCLUSION: The novel spiral staircase trajectory offers improved aliasing characteristics for through-plane parallel imaging acceleration in 3D spiral acquisitions.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Algoritmos , Análisis de Fourier , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
12.
Magn Reson Med ; 81(2): 1016-1030, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30295955

RESUMEN

PURPOSE: In conventional multiband (MB) CAIPIRINHA, additional reference scans are acquired to allow the separation of the excited slices. In this study, an acquisition-reconstruction technique that makes use of the MB data to calculate these reference data is presented. The method was integrated into a 2D time-resolved phase-contrast MR sequence used to assess velocities of the myocardium. METHODS: The RF phases of the MB pulse are cycled through time so that consecutive cardiac phases can be grouped to form reference scans at a lower temporal resolution. These reference data are subsequently used to separate the original slices at the original, high temporal resolution using slice/split-slice GRAPPA algorithms. Slice separation performances are evaluated and compared with conventional methods at 3 T, and 3 different strategies for the calibration of the kernels are proposed and compared. Finally, 6 subjects were scanned to assess velocities of the myocardium. RESULTS: Because the acquisition of external references is not needed, no additional breath-holds are required and the full MB acceleration could be exploited. Because the reference and MB data have the same resolution and phase structure, better slice separation was achieved when comparing the proposed technique to conventional workflows. Finally, time-resolved velocities of the myocardial tissue were successfully quantified from MB data, showing good agreement with single-band measurements. CONCLUSION: Our built-in reference method allows the full exploitation of the MB acceleration and it limits the number of breath-holds.


Asunto(s)
Imagen Eco-Planar , Corazón/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Algoritmos , Artefactos , Mapeo Encefálico , Contencion de la Respiración , Humanos , Microscopía de Contraste de Fase , Miocardio/patología , Fantasmas de Imagen
13.
Magn Reson Med ; 81(1): 129-139, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30058197

RESUMEN

PURPOSE: Simultaneous multislice (SMS) accelerated balanced SSFP (bSSFP) imaging can be impaired by off-resonance effects, due to slice-specific alterations in the frequency response. In this work, we introduce gradient-controlled local Larmor adjustment as a means to restore the frequency response and to stabilize SMS-accelerated bSSFP imaging with respect to banding artifacts. METHODS: Providing each simultaneously excited slice with an individual RF phase cycle in SMS-accelerated bSSFP imaging results in the sequence's frequency response being shifted slice-specifically along the off-resonance axis. The net available pass-band for imaging is effectively reduced, increasing the measurement's susceptibility toward B0 inhomogeneities. To overcome these issues, gradient-controlled local Larmor adjustment modifies the Larmor frequency locally and aligns the slice-specific frequency responses on resonance by (1) unbalancing the slice gradient by a small constant amount and (2) modifying the RF phase cycles homogeneously across all slices. The concept is investigated using simulations and phantom experiments and applied to SMS-accelerated bSSFP cine cardiovascular MR at 3 T. RESULTS: Phantom and in vivo measurements demonstrate the successful removal of banding artifacts and restoration of the bSSFP frequency response using gradient-controlled local Larmor adjustment. For large slice thicknesses and small slice distances, banding artifacts become slightly widened. CONCLUSION: Gradient-controlled local Larmor adjustment successfully restores the frequency response in SMS-accelerated bSSFP imaging without increasing the sequence's susceptibility toward eddy current effects. The concept facilitates combinations of the different SMS encoding concepts and provides a powerful way to actively control off-resonance effects in slice-accelerated bSSFP imaging.


Asunto(s)
Corazón/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Ondas de Radio , Procesamiento de Señales Asistido por Computador , Algoritmos , Artefactos , Simulación por Computador , Voluntarios Sanos , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Reproducibilidad de los Resultados
14.
Magn Reson Med ; 81(3): 1659-1670, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30257049

RESUMEN

PURPOSE: Assess the potential gain in acceleration performance of a 256-channel versus 32-channel receive coil array at 7 T in combination with a 2D CAIPIRINHA sequence for 3D data sets. METHODS: A 256-channel receive setup was simulated by placing 2 small 16-channel high-density receive arrays at 2 × 8 different locations on the head of healthy participants. Multiple consecutive measurements were performed and coil sensitivity maps were combined to form a complete 256-channel data set. This setup was compared with a standard 32-channel head coil, in terms of SNR, noise correlation, and acceleration performance (g-factor). RESULTS: In the periphery of the brain, the receive SNR was on average a factor 1.5 higher (ranging up to a factor 2.7 higher) than the 32-channel coil; in the center of the brain the SNR was comparable or lower, depending on the size of the region of interest, with a factor 1.0 on average (ranging from 0.7 up to a factor of 1.6). The average noise correlation between coil elements was 3% for the 256-channel coil, and 5% for the 32-channel coil. At acceptable g-factors (< 2), the achievable acceleration factor using SENSE and 2D CAIPIRINHA was 24 and 28, respectively, versus 9 and 12 for the 32-channel coil. CONCLUSION: The receive performance of the simulated 256 channel array was better than the 32-channel reference. Combined with 2D CAIPIRINHA, a peak acceleration factor of 28 was assessed, showing great potential for high-density receive arrays.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Humanos , Imagenología Tridimensional , Relación Señal-Ruido
15.
Neuroimage ; 168: 101-118, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28392492

RESUMEN

The SNR and CNR benefits of ultra-high field (UHF) have helped push the envelope of achievable spatial resolution in MRI. For applications based on susceptibility contrast where there is a large CNR gain, high quality sub-millimeter resolution imaging is now being routinely performed, particularly in fMRI and phase imaging/QSM. This has enabled the study of structure and function of very fine-scale structures in the brain. UHF has also helped push the spatial resolution of many other MRI applications as will be outlined in this review. However, this push in resolution comes at a cost of a large encoding burden leading to very lengthy scans. Developments in parallel imaging with controlled aliasing and the move away from 2D slice-by-slice imaging to much more SNR-efficient simultaneous multi-slice (SMS) and 3D acquisitions have helped address this issue. In particular, these developments have revolutionized the efficiency of UHF MRI to enable high spatiotemporal resolution imaging at an order of magnitude faster acquisition. In addition to describing the main approaches to these techniques, this review will also outline important key practical considerations in using these methods in practice. Furthermore, new RF pulse design to tackle the B1+ and SAR issues of UHF and the increased SAR and power requirement of SMS RF pulses will also be touched upon. Finally, an outlook into new developments of smart encoding in more dimensions, particularly through using better temporal/across-contrast encoding and reconstruction will be described. Just as controlled aliasing fully exploits spatial encoding in parallel imaging to provide large multiplicative gains in accelerations, the complimentary use of these new approaches in temporal and across-contrast encoding are expected to provide exciting opportunities for further large gains in efficiency to further push the spatiotemporal resolution of MRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Hemodinámica/fisiología , Imagen por Resonancia Magnética/métodos , Encéfalo/anatomía & histología , Encéfalo/fisiología , Neuroimagen Funcional/normas , Humanos , Imagen por Resonancia Magnética/normas
16.
Magn Reson Med ; 79(1): 401-406, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28220617

RESUMEN

PURPOSE: To introduce a highly accelerated T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) acquisition that uses wave-controlled aliasing in parallel imaging (wave-CAIPI) encoding to retain high image quality. METHODS: Significant acceleration of the MP-RAGE sequence is demonstrated using the wave-CAIPI technique. Here, sinusoidal waveforms are used to spread aliasing in all three directions to improve the g-factor. Combined with a rapid (2 s) coil sensitivity acquisition and data-driven trajectory calibration, we propose an online integrated acquisition-reconstruction pipeline for highly efficient MP-RAGE imaging. RESULTS: The 9-fold accelerated MP-RAGE acquisition can be performed in 71 s, with a maximum and average g-factor of gmax = 1.27 and gavg = 1.06 at 3T. Compared with the state-of-the-art method controlled aliasing in parallel imaging results in higher acceleration (2D-CAIPIRINHA), this is a factor of 4.6/1.4 improvement in gmax /gavg . In addition, we demonstrate a 57 s acquisition at 7T with 12-fold acceleration. This acquisition has a g-factor performance of gmax = 1.15 and gavg = 1.04. CONCLUSION: Wave encoding overcomes the g-factor noise amplification penalty and allows for an order of magnitude acceleration of MP-RAGE acquisitions. Magn Reson Med 79:401-406, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Algoritmos , Calibración , Femenino , Sustancia Gris/diagnóstico por imagen , Voluntarios Sanos , Humanos , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Magnetismo , Masculino , Programas Informáticos
17.
Magn Reson Med ; 80(6): 2427-2438, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29663507

RESUMEN

PURPOSE: The aim of this project was to develop a GRAPPA-based reconstruction for wave-CAIPI data. Wave-CAIPI fully exploits the 3D coil sensitivity variations by combining corkscrew k-space trajectories with CAIPIRINHA sampling. It reduces artifacts and limits reconstruction induced spatially varying noise enhancement. The GRAPPA-based wave-CAIPI method is robust and does not depend on the accuracy of coil sensitivity estimations. METHODS: We developed a GRAPPA-based, noniterative wave-CAIPI reconstruction algorithm utilizing multiple GRAPPA kernels. For data acquisition, we implemented a fast 3D magnetization-prepared rapid gradient-echo wave-CAIPI sequence tailored for ultra-high field application. The imaging results were evaluated by comparing the g-factor and the root mean square error to Cartesian CAIPIRINHA acquisitions. Additionally, to assess the performance of subcortical segmentations (calculated by FreeSurfer), the data were analyzed across five subjects. RESULTS: Sixteen-fold accelerated whole brain magnetization-prepared rapid gradient-echo data (1 mm isotropic resolution) were acquired in 40 seconds at 7T. A clear improvement in image quality compared to Cartesian CAIPIRINHA sampling was observed. For the chosen imaging protocol, the results of 16-fold accelerated wave-CAIPI acquisitions were comparable to results of 12-fold accelerated Cartesian CAIPIRINHA. In comparison to the originally proposed SENSitivity Encoding reconstruction of Wave-CAIPI data, the GRAPPA approach provided similar image quality. CONCLUSION: High-quality, wave-CAIPI magnetization-prepared rapid gradient-echo images can be reconstructed by means of a GRAPPA-based reconstruction algorithm. Even for high acceleration factors, the noniterative reconstruction is robust and does not require coil sensitivity estimations. By altering the aliasing pattern, ultra-fast whole-brain structural imaging becomes feasible.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Neuroimagen/métodos , Algoritmos , Artefactos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional , Programas Informáticos
18.
Magn Reson Med ; 79(5): 2589-2596, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28905414

RESUMEN

PURPOSE: The combination of 3D echo planar imaging (3D-EPI) with a 2D-CAIPIRINHA undersampling scheme provides high flexibility in the optimization for spatial or temporal resolution. This flexibility can be increased further with the addition of a cylindrical excitation pulse, which exclusively excites the brain regions of interest. Here, 3D-EPI was combined with a 2D radiofrequency pulse to reduce the brain area from which signal is generated, and hence, allowing either reduction of the field of view or reduction of parallel imaging noise amplification. METHODS: 3D-EPI with cylindrical excitation and 4 × 3-fold undersampling in a 2D-CAIPIRINHA sampling scheme was used to generate functional MRI (fMRI) data with either 2-mm or 0.9-mm in-plane resolution and 1.1-s temporal resolution over a 5-cm diameter cylinder placed over both temporal lobes for an auditory fMRI experiment. RESULTS: Significant increases in image signal-to-noise ratio (SNR) and temporal SNR (tSNR) were found for both 2-mm isotropic data and the high-resolution protocol when using the cylindrical excitation pulse. Both protocols yielded highly significant blood oxygenation level-dependent responses for the presentation of natural sounds. CONCLUSION: The higher tSNR of the cylindrical excitation 3D-EPI data makes this sequence an ideal choice for high spatiotemporal resolution fMRI acquisitions. Magn Reson Med 79:2589-2596, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Imagenología Tridimensional/métodos , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
19.
Magn Reson Med ; 79(1): 394-400, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28198576

RESUMEN

PURPOSE: To present a constrained slice-dependent (CSD) background-suppression (BS) scheme in 2D arterial spin labeling (ASL) using simultaneous multislice acquisition with blipped-CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration). METHODS: Background suppression for 2D acquisition is challenging because of the multiple nulling points required for sequential slice readout. Constrained slice-dependent BS exploits the simultaneous multislice technique to reduce the readout duration, and uses slice-dependent premodulation pulses to achieve BS across slice groups. The proposed scheme was evaluated by in vivo brain experiments at 3 Tesla with multiband acceleration factors up to four. The utility of CSD BS was demonstrated through comparison against standard 2D acquisitions as well as 3D-BS pseudo-continuous ASL (pCASL). RESULTS: An average of 95% background signal reduction was achieved with CSD BS. As a result, the temporal signal-to-noise ratio (SNR) increased 48.2/39.9/36.9/36.0% and spatial SNR increased 132.5/80.0/63.5/54.2 in CSD-BS MB-1/2/3/4 scans, respectively. Whole-brain coverage was achievable with CSD-BS pCASL with MB-4, which yielded comparable spatial SNR as 3D BS pCASL. CONCLUSIONS: The proposed CSD-BS scheme for 2D-SMS pCASL offers a promising approach for effective suppression of background signals across a wide range of T1 to achieve whole-brain perfusion imaging. Magn Reson Med 79:394-400, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Arterias/diagnóstico por imagen , Imagen Eco-Planar , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Aceleración , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Circulación Cerebrovascular , Femenino , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Angiografía por Resonancia Magnética , Masculino , Modelos Estadísticos , Movimiento (Física) , Marcadores de Spin , Adulto Joven
20.
Neuroimage ; 163: 81-92, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28923276

RESUMEN

State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Femenino , Humanos , Masculino , Descanso , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA