Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(6): 1115-1126.e8, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931242

RESUMEN

Previously, two men were cured of HIV-1 through CCR5Δ32 homozygous (CCR5Δ32/Δ32) allogeneic adult stem cell transplant. We report the first remission and possible HIV-1 cure in a mixed-race woman who received a CCR5Δ32/Δ32 haplo-cord transplant (cord blood cells combined with haploidentical stem cells from an adult) to treat acute myeloid leukemia (AML). Peripheral blood chimerism was 100% CCR5Δ32/Δ32 cord blood by week 14 post-transplant and persisted through 4.8 years of follow-up. Immune reconstitution was associated with (1) loss of detectable replication-competent HIV-1 reservoirs, (2) loss of HIV-1-specific immune responses, (3) in vitro resistance to X4 and R5 laboratory variants, including pre-transplant autologous latent reservoir isolates, and (4) 18 months of HIV-1 control with aviremia, off antiretroviral therapy, starting at 37 months post-transplant. CCR5Δ32/Δ32 haplo-cord transplant achieved remission and a possible HIV-1 cure for a person of diverse ancestry, living with HIV-1, who required a stem cell transplant for acute leukemia.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Infecciones por VIH , VIH-1 , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Masculino , Adulto , Femenino , Humanos , Sangre Fetal , Leucemia Mieloide Aguda/terapia
2.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37236188

RESUMEN

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Asunto(s)
Infecciones por VIH , Trasplante de Células Madre Hematopoyéticas , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca fascicularis , Carga Viral
3.
Mol Cell ; 83(12): 2108-2121.e7, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244255

RESUMEN

The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.


Asunto(s)
Fosfopéptidos , Receptores CCR5 , Humanos , Fosforilación , beta-Arrestinas/metabolismo , Fosfopéptidos/metabolismo , Receptores CCR5/metabolismo , Línea Celular
4.
Proc Natl Acad Sci U S A ; 121(12): e2321907121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457490

RESUMEN

The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Infecciones por VIH/genética , Infecciones por VIH/tratamiento farmacológico , Frecuencia de los Genes , Receptores CCR5/genética , Síndrome de Inmunodeficiencia Adquirida/genética , Mutación , Homocigoto
5.
Proc Natl Acad Sci U S A ; 121(5): e2304020121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261619

RESUMEN

Follicular regulatory T cells (Tfr) can play opposite roles in the regulation of germinal center (GC) responses. Depending on the studies, Tfr suppress or support GC and B cell affinity maturation. However, which factors determine positive vs. negative effects of Tfr on the GC B cell is unclear. In this study, we show that GC centrocytes that express MYC up-regulate expression of CCL3 chemokine that is needed for both the positive and negative regulation of GC B cells by Tfr. B cell-intrinsic expression of CCL3 contributes to Tfr-dependent positive selection of foreign Ag-specific GC B cells. At the same time, expression of CCL3 is critical for direct Tfr-mediated suppression of GC B cells that acquire cognate to Tfr nuclear proteins. Our study suggests that CCR5 and CCR1 receptors promote Tfr migration to CCL3 and highlights Ccr5 expression on the Tfr subset that expresses Il10. Based on our findings and previous studies, we suggest a model of chemotactically targeted checkpoint control of B cells undergoing positive selection in GCs by Tfr, where Tfr directly probe and license foreign antigen-specific B cells to complete their positive selection in GCs but, at the same time, suppress GC B cells that present self-antigens cognate to Tfr.


Asunto(s)
Linfocitos B , Linfocitos T Reguladores , Centro Germinal , Autoantígenos , Quimiocina CCL3
6.
Immunity ; 46(2): 205-219, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28190711

RESUMEN

Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8+ T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8+ T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8+ T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1+ DCs, thereby optimizing XCR1+ DC maturation and cross-presentation. These data support a model in which CD8+ T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiotaxis de Leucocito/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Transgénicos
7.
Immunity ; 46(6): 1005-1017.e5, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636951

RESUMEN

CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.


Asunto(s)
Quimiocina CCL5/química , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/inmunología , VIH-1/fisiología , Modelos Moleculares , Imitación Molecular , Receptores CCR5/química , Animales , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/farmacología , Quimiocina CCL5/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Ciclohexanos/química , Ciclohexanos/farmacología , Proteína gp120 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/química , Infecciones por VIH/tratamiento farmacológico , Humanos , Maraviroc , Unión Proteica , Conformación Proteica , Receptores CCR5/metabolismo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología , Internalización del Virus/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 120(19): e2217887120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126704

RESUMEN

Treatment of HIV-1ADA-infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4+ T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , Ratones , Animales , Humanos , Antirretrovirales/uso terapéutico , Edición Génica , Provirus/genética , Receptores CCR5
9.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38087779

RESUMEN

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Asunto(s)
VIH-1 , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , VIH-1/fisiología , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacología , ARN Interferente Pequeño/genética
10.
J Infect Dis ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976510

RESUMEN

The current study aimed to investigate determinants of severity in a previously healthy patient who experienced two life-threatening infections, from West Nile Virus and SARS-CoV2. During COVID19 hospitalization he was diagnosed with a thymoma, retrospectively identified as already present at the time of WNV infection. Heterozygosity for p.Pro554Ser in the TLR3 gene, which increases susceptibility to severe COVID-19, and homozygosity for CCR5 c.554_585del, associated to severe WNV infection, were found. Neutralizing anti-IFN-α and anti-IFN-ω auto-antibodies were detected, likely induced by the underlying thymoma and increasing susceptibility to both severe COVID-19 pneumonia and West Nile encephalitis.

11.
Am J Physiol Cell Physiol ; 326(5): C1320-C1333, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497114

RESUMEN

Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.


Asunto(s)
Adipocitos , Quimiocina CCL5 , Mioquinas , Obesidad , Animales , Ratones , Quimiocina CCL5/genética , Quimiocina CCL5/farmacología , Ligandos , Ratones Obesos , Músculo Esquelético/metabolismo , Receptores CCR/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología
12.
J Biol Chem ; 299(10): 105229, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690681

RESUMEN

Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in leukocyte development and inflammation and their status as coreceptors for HIV-1 infection, among other roles. Both receptors form dimers or oligomers of unclear function. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate their dimerization interfaces, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that change how the receptors self-associate, either via specific oligomer assembly or alternative mechanisms of clustering in close proximity. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations predicted from the scan to reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. A mutation in the dimer interface of CXCR4 had increased binding to the ligand CXCL12 and yet diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.


Asunto(s)
Modelos Moleculares , Mutación , Receptores CCR5 , Receptores CXCR4 , Dimerización , Mutagénesis , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Humanos , Línea Celular , Estructura Terciaria de Proteína
13.
J Cell Physiol ; 239(2): e31171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214098

RESUMEN

Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.


Asunto(s)
Diferenciación Celular , Glicoproteínas de Membrana , Proteínas Quimioatrayentes de Monocitos , Osteoclastos , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos ICR , Proteínas Quimioatrayentes de Monocitos/genética , Proteínas Quimioatrayentes de Monocitos/metabolismo , Proteínas Quimioatrayentes de Monocitos/farmacología , FN-kappa B/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK/farmacología , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Regulación hacia Arriba
14.
Cancer Sci ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183447

RESUMEN

Combination therapy of anti-programmed cell death protein-1 (PD-1) antibodies and tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis for hepatocellular carcinoma (HCC), but many patients still have unsatisfactory outcomes. CD8 T cells are known to exert a pivotal function in the immune response against tumors. Nevertheless, most CD8 T cells in HCC tissues are in a state of exhaustion, losing the cytotoxic activity against malignant cells. Cytokines, mainly secreted by immune cells, play an important role in the occurrence and development of tumors. Here, we demonstrated the changes in exhausted CD8T cells during combination therapy by single-cell RNA sequencing (scRNA-seq) analysis on tumor samples before and after treatment. Combination therapy exerted a substantial impact on the exhausted CD8T cells, particularly in terms of cytokine expression. CCL5 was the most abundantly expressed cytokine in CD8T cells and exhausted CD8T cells, and its expression increased further after treatment. Subsequently, we discovered the CCL5/CCR5/CYP1A1 pathway through RNA sequencing (RNA-seq) on CCL5-stimulated Huh7 cells and verified through a series of experiments that this pathway can mediate the resistance of liver cancer cells to lenvatinib. Tissue experiments showed that after combination therapy, the CCL5/CCR5/CYP1A1 pathway was activated, which can benefit the residual tumor cells to survive treatment. Tumor-bearing mouse experiments demonstrated that bergamottin (BGM), a competitive inhibitor of CYP1A1, can enhance the efficacy of both lenvatinib and combination therapy. Our research revealed one mechanism by which hepatoma cells can survive the combination therapy, providing a theoretical basis for the refined treatment of HCC.

15.
Retrovirology ; 21(1): 2, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263120

RESUMEN

Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the function of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conformational diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are currently being developed to overcome this problem.


Asunto(s)
VIH-1 , Apoptosis , Membrana Celular , Movimiento Celular , Quimiocinas
16.
Retrovirology ; 21(1): 11, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945996

RESUMEN

BACKGROUND: Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS: Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION: These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por VIH , VIH-1 , Enfermedades Neuroinflamatorias , Neuronas , Animales , Ratones , Infecciones por VIH/virología , Infecciones por VIH/patología , Infecciones por VIH/complicaciones , Humanos , Neuronas/virología , Neuronas/patología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/virología , Encéfalo/patología , Encéfalo/virología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo
17.
EMBO J ; 39(15): e104749, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32525588

RESUMEN

CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Ceramidas/inmunología , Memoria Inmunológica , Receptores CCR5/deficiencia , Animales , Antígenos/genética , Linfocitos T CD4-Positivos/citología , Ceramidas/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Receptores CCR5/inmunología
18.
J Neuroinflammation ; 21(1): 136, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802924

RESUMEN

Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.


Asunto(s)
Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Receptores CCR5 , Análisis de la Célula Individual , Uveítis , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Uveítis/inmunología , Receptores CCR5/metabolismo , Receptores CCR5/genética , Enfermedades Autoinmunes/terapia , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Femenino , Análisis de Expresión Génica de una Sola Célula
19.
J Virol ; 97(5): e0027023, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37042759

RESUMEN

Understanding the facilitator of HIV-1 infection and subsequent latency establishment may aid the discovery of potential therapeutic targets. Here, we report the elevation of plasma transforming growth factor ß (TGF-ß) during acute HIV-1 infection among men who have sex with men (MSM). Using a serum-free in vitro system, we further delineated the role of TGF-ß signaling in mediating HIV-1 infection of activated and resting memory CD4+ T cells. TGF-ß could upregulate both the frequency and expression of the HIV-1 coreceptor CCR5, thereby augmenting CCR5-tropic viral infection of resting and activated memory CD4+ T cells via Smad3 activation. The production of live HIV-1JR-FL upon infection and reactivation was increased in TGF-ß-treated resting memory CD4+ T cells without increasing CD4 expression or inducing T cell activation. The expression of CCR7, a central memory T cell marker that serves as a chemokine receptor to facilitate T cell trafficking into lymphoid organs, was also elevated on TGF-ß-treated resting and activated memory CD4+ T cells. Moreover, the expression of CXCR3, a chemokine receptor recently reported to facilitate CCR5-tropic HIV-1 infection, was increased on resting and activated memory CD4+ T cells upon TGF-ß treatment. These findings were coherent with the observation that ex vivo CCR5 and CXCR3 expression on total resting and resting memory CD4+ T cells in combination antiretroviral therapy (cART)-naive and cART-treated patients were higher than in healthy individuals. Overall, the study demonstrated that TGF-ß upregulation induced by acute HIV-1 infection might promote latency reservoir establishment by increasing infected resting memory CD4+ T cells and lymphoid organ homing of infected central memory CD4+ T cells. Therefore, TGF-ß blockade may serve as a potential supplementary regimen for HIV-1 functional cure by reducing viral latency. IMPORTANCE Incomplete eradication of HIV-1 latency reservoirs remains the major hurdle in achieving a complete HIV/AIDS cure. Dissecting the facilitator of latency reservoir establishment may aid the discovery of druggable targets for HIV-1 cure. This study showed that the T cell immunomodulatory cytokine TGF-ß was upregulated during the acute phase of infection. Using an in vitro serum-free system, we specifically delineated that TGF-ß promoted HIV-1 infection of both resting and activated memory CD4+ T cells via the induction of host CCR5 coreceptor. Moreover, TGF-ß-upregulated CCR7 or CXCR3 might promote HIV-1 latent infection by facilitating lymphoid homing or IP-10-mediated viral entry and DNA integration, respectively. Infected resting and central memory CD4+ T cells are important latency reservoirs. Increased infection of these cells mediated by TGF-ß will promote latency reservoir establishment during early infection. This study, therefore, highlighted the potential use of TGF-ß blockade as a supplementary regimen with cART in acute patients to reduce viral latency.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , VIH-1 , Homosexualidad Masculina , Transducción de Señal , Humanos , Masculino , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/tratamiento farmacológico , Seropositividad para VIH , VIH-1/fisiología , Receptores CCR7/metabolismo , Minorías Sexuales y de Género , Factor de Crecimiento Transformador beta , Latencia del Virus/efectos de los fármacos , Replicación Viral , Transducción de Señal/efectos de los fármacos
20.
HIV Med ; 25(3): 322-331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37821095

RESUMEN

BACKGROUND: At present, combination antiretroviral therapy (cART) is the mainstay for the treatment of people living with HIV/AIDS. cART can suppress the viral load to a minimal level; however, the possibility of the emergence of full-blown AIDS is always there. In the latter part of the first decade of the 21st century, an HIV-positive person received stem cell transplantation (SCT) for treatment of his haematological malignancy. The patient was able to achieve remission of the haematological condition as well as of HIV following SCT. Thorough investigations of various samples including blood and biopsy could not detect the virus in the person's body. The person was declared to be the first cured case of HIV. LITERATURE SEARCH: Over the next decade, a few more similar cases were observed and have recently been declared cured of the infection. A comprehensive search was performed in PubMed, Cochrane library and Google Scholar. Four such additional cases were found in literature. DESCRIPTION & DISCUSSION: These cases all share a common proposed mechanism for the HIV cure, that is, transplantation of stem cells from donors carrying a homozygous mutation in a gene encoding for CCR5 (receptor utilized by HIV for entry into the host cell), denoted as CCR5△32. This mutation makes the host immune cells devoid of CCR5, causing the host to acquire resistance against HIV. To the best of our knowledge, this is the first review to look at relevant and updated information of all cured cases of HIV as well as the related landmarks in history and discusses the underlying mechanism(s).


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Trasplante de Células Madre Hematopoyéticas , Humanos , Mutación , Receptores CCR5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA