RESUMEN
In this study, we successfully applied the strategy of combining tandem promoters and tandem signal peptides with overexpressing signal peptidase to efficiently express and produce γ-glutamyl peptidase (GGT) enzymes (BsGGT, BaGGT, and BlGGT) from Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus licheniformis in Bacillus subtilis ATCC6051Δ5. In order to avoid the problem of instability caused by duplicated strong promoters, we assembled tandem promoters of different homologous genes from different species. To achieve resistance marker-free enzyme in the food industry, we first removed the replication origin and corresponding resistance marker of Escherichia coli from the expression vector. The plasmid was then transformed into the B. subtilis host, and the Kan resistance gene in the expression plasmid was directly edited and silenced using the CRISPR/Cas9n-AID base editing system. As a result, a recombinant protein expression carrier without resistance markers was constructed, and the enzyme activity of the BlGGT strain during shake flask fermentation can reach 53.65 U/mL. The recombinant BlGGT was immobilized with epoxy resin and maintained 82.8% enzyme activity after repeated use for 10 times and 87.36% enzyme activity after storage at 4 °C for 2 months. The immobilized BlGGT enzyme was used for the continuous synthesis of theanine with a conversion rate of 65.38%. These results indicated that our approach was a promising solution for improving enzyme production efficiency and achieving safe production of enzyme preparations in the food industry. KEY POINTS: ⢠Efficient expression of recombinant proteins by a combination of dual promoter and dual signal peptide. ⢠Construction of small vectors without resistance markers in B. subtilis using CRISPR/Cas9n-AID editing system. ⢠The process of immobilizing BlGGT with epoxy resin was optimized.
Asunto(s)
Bacillus licheniformis , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resinas Epoxi , Bacillus licheniformis/genética , Proteínas Recombinantes/genética , Enzimas Inmovilizadas/metabolismoRESUMEN
BACKGROUND: Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. RESULTS: In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02â³4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. CONCLUSIONS: The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.
Asunto(s)
Bacillus amyloliquefaciens , Sistemas CRISPR-Cas , Bacillus amyloliquefaciens/genética , Enzimas de Restricción-Modificación del ADN/genética , Edición Génica/métodos , alfa-Amilasas/genéticaRESUMEN
Thyroid cancer is the most common endocrine malignancy, and the characterization of the genetic alterations in coding-genes that drive thyroid cancer are well consolidated in MAPK signaling. In the context of non-coding RNAs, microRNAs (miRNAs) are small non-coding RNAs that, when deregulated, cooperate to promote tumorigenesis by targeting mRNAs, many of which are proto-oncogenes and tumor suppressors. In thyroid cancer, miR-146b-5p is the most overexpressed miRNA associated with tumor aggressiveness and progression, while the antisense blocking of miR-146b-5p results in anti-tumoral effect. Therefore, inactivating miR-146b has been considered as a promising strategy in thyroid cancer therapy. Here, we applied the CRISPR/Cas9n editing system to target the MIR146B gene in an aggressive anaplastic thyroid cancer (ATC) cell line. For that, we designed two single-guide RNAs cloned into plasmids to direct Cas9 nickase (Cas9n) to the genomic region of the pre-mir-146b structure to target miR-146b-5p and miR-146b-3p sequences. In this plasmidial strategy, we cotransfected pSp-Cas9n-miR-146b-GuideA-puromycin and pSp-Cas9n-miR-146b-GuideB-GFP plasmids in KTC2 cells and selected the puromycin resistant + GFP positive clones (KTC2-Cl). As a result, we observed that the ATC cell line KTC2-Cl1 showed a 60% decrease in the expression of miR-146b-5p compared to the control, also showing reduced cell viability, migration, colony formation, and blockage of tumor development in immunocompromised mice. The analysis of the MIR146B edited sequence shows a 5 nt deletion in the miR-146b-5p region and a 1 nt deletion in the miR-146b-3p region in KTC2-Cl1. Thus, we developed an effective CRISPR/Cas9n system to edit the MIR146B miRNA gene and reduce miR-146b-5p expression which constitutes a potential molecular tool for the investigation of miRNAs function in thyroid cancer.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Marcación de Gen , MicroARNs , ARN Neoplásico , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Animales , Línea Celular , Movimiento Celular/genética , Supervivencia Celular/genética , Xenoinjertos , Humanos , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , Trasplante de Neoplasias , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patologíaRESUMEN
An emerging treatment for Parkinson's disease (PD) is cell replacement therapy. Authentic midbrain dopaminergic (mDA) neuronal precursors can be differentiated from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). These laboratory-generated mDA cells have been demonstrated to mature into functional dopaminergic neurons upon transplantation into preclinical models of PD. However, clinical trials with human fetal mesenchephalic cells have shown that cell replacement grafts in PD are susceptible to Lewy body formation suggesting host-to-graft transfer of α-synuclein pathology. Here, we have used CRISPR/Cas9n technology to delete the endogenous SNCA gene, encoding for α-synuclein, in a clinical-grade hESC line to generate SNCA+/- and SNCA-/- cell lines. These hESC lines were first differentiated into mDA neurons, and then challenged with recombinant α-synuclein preformed fibrils (PFFs) to seed the formation for Lewy-like pathology as measured by phosphorylation of serine-129 of α-synuclein (pS129-αSyn). Wild-type neurons were fully susceptible to the formation of protein aggregates positive for pS129-αSyn, while SNCA+/- and SNCA-/- neurons exhibited significant resistance to the formation of this pathological mark. This work demonstrates that reducing or completely removing SNCA alleles by CRISPR/Cas9n-mediated gene editing confers a measure of resistance to Lewy pathology.
Asunto(s)
Proteína 9 Asociada a CRISPR , Diferenciación Celular , Neuronas Dopaminérgicas , Células Madre Embrionarias , Edición Génica , Enfermedad de Parkinson/terapia , Sinucleinopatías , alfa-Sinucleína , Línea Celular , Humanos , Mesencéfalo/citologíaRESUMEN
Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN, which codes for nattokinase in Bacillus subtilis, was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-SsacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-SsacC Finally, the engineered strain DWc9nΔ7 (Δepr ΔwprA Δmpr ΔaprE Δvpr ΔbprA ΔbacABC), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research.IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in Bacillus licheniformis via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.
Asunto(s)
Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Desoxirribonucleasa I/genética , Edición Génica/métodos , Subtilisinas/genética , Bacillus licheniformis/enzimología , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Subtilisinas/metabolismoRESUMEN
Heme is a crucial component in endowing plant-based meat analogs with flavor and color. This study aimed to develop a green strategy for heme production by reducing fermentation off-odor and accelerating heme synthesis. First, an efficient CRISPR/Cas9n system was constructed in Bacillus amyloliquefaciens to construct the odor-reducing chassis cell HZC9nΔGPSU, and the odor substances including the branched-chain short fatty acids, putrescine, and ammonia were reduced by 62, 70, and 88%, respectively. Meanwhile, the hemA gene was confirmed to be the key gene for enhanced heme synthesis. Various hemA genes were compared to obtain the best gene dhemA, and the catalysis mechanism was explained by molecular docking simulation. After further expression of dhemA in HZC9nΔGPSU, the heme titer of HZC9nΔGPSU/pHY-dhemA reached 11.31 ± 0.51 mg/L, 1.70-fold higher than that of HZC9n/pHY-dhemA. The knockout of off-odor-related genes reduced the odor substances and enhanced the heme synthesis, which is promising for the green production of high-quality heme.
Asunto(s)
Bacillus amyloliquefaciens , Proteínas Bacterianas , Sistemas CRISPR-Cas , Hemo , Odorantes , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/química , Odorantes/análisis , Hemo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Eliminación de Gen , Simulación del Acoplamiento Molecular , FermentaciónRESUMEN
Rapid, efficient, specific and sensitive diagnostic techniques are critical for selecting appropriate treatments for drug-resistant bacterial infections. To address this challenge, we have developed a novel diagnostic method, called the Dual-Cas Tandem Diagnostic Platform (DTDP), which combines the use of Cas9 nickase (Cas9n) and Cas12a. DTDP works by utilizing the Cas9n-sgRNA complex to create a nick in the target strand's double-stranded DNA (dsDNA). This prompts DNA polymerase to displace the single-stranded DNA (ssDNA) and leads to cycles of DNA replication through nicking, displacement, and extension. The ssDNA is then detected by the Cas12a-crRNA complex (which is PAM-free), activating trans-cleavage and generating a fluorescent signal from the fluorescent reporter. DTDP exhibits a high sensitivity (1 CFU/mL or 100 ag/µL), high specificity (specifically to MRSA in nine pathogenic species), and excellent accuracy (100%). The dual RNA recognition process in our method improves diagnostic specificity by decreasing the limitations of Cas12a in detecting dsDNA protospacer adjacent motifs (PAMs) and leverages multiple advantages of multi-Cas enzymes in diagnostics. This novel approach to pathogenic microorganism detection has also great potential for clinical diagnosis.
RESUMEN
The bacteria Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing (CBP). However, genetic engineering is necessary to improve this organism's cellulose degradation and bioconversion efficiencies to meet standard industrial requirements. In this study, CRISPR-Cas9n was used to integrate an efficient ß-glucosidase into the genome of C. cellulolyticum, disrupting lactate dehydrogenase (ldh) expression and reducing lactate production. The engineered strain showed a 7.4-fold increase in ß-glucosidase activity, a 70% decrease in ldh expression, a 12% increase in cellulose degradation, and a 32% increase in ethanol production compared to wild type. Additionally, ldh was identified as a potential site for heterologous expression. These results demonstrate that simultaneous ß-glucosidase integration and lactate dehydrogenase disruption is an effective strategy for increasing cellulose to ethanol bioconversion rates in C. cellulolyticum.
Asunto(s)
Clostridium cellulolyticum , Etanol , Clostridium cellulolyticum/genética , Clostridium cellulolyticum/metabolismo , Etanol/metabolismo , beta-Glucosidasa/metabolismo , Fermentación , Celulosa/metabolismo , Lactato Deshidrogenasas/metabolismoRESUMEN
Hyaluronic acid (HA), a high-value biomacromolecule, has wide applications in medical, cosmetic and food fields. Currently, employing the safe-grade microorganisms for de novo biosynthesis of HA from renewable substrates has become a promising alternative. In this study, we established a Bacillus amyloliquefaciens strain as platform for HA production from Jerusalem artichoke inulin. Firstly, the different HA and UDP-GlcUA synthase genes were introduced into B. amyloliquefaciens to construct the HA synthesis pathway. Secondly, the byproduct polysaccharides were removed by knocking sacB and epsA-O using CRISPR/Cas9n system, resulting in a 13% increase in HA production. Finally, 2.89 g/L HA with a high molecular weight of 1.5 MDa was obtained after optimizing fermentation conditions and adding osmotic agents. This study demonstrates the engineered B. amyloliquefaciens can effectively synthesize HA with Jerusalem artichoke inulin and provides a green route for HA production.
Asunto(s)
Bacillus amyloliquefaciens , Helianthus , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Fermentación , Helianthus/genética , Helianthus/metabolismo , Ácido Hialurónico/metabolismo , Inulina/metabolismoRESUMEN
Background: Loss of the expression of thyroid differentiation markers such as sodium iodide symporter (NIS) and, consequently, radioiodine refractoriness is observed in aggressive papillary thyroid cancer and anaplastic thyroid cancer (ATC) that may harbor the BRAFV600E mutation. Activation of the BRAFV600E oncogene in thyroid follicular cells induces the expression of the miR-17-92 cluster that comprises seven mature microRNAs (miRNAs). miRNAs are a class of endogenous small RNAs (â¼22 nt) that regulate gene expression post-transcriptionally. Indeed, miR-17-92 is overexpressed in ATC, and in silico prediction shows the potential targeting of thyroid transcription factors and tumor suppressor pathways. In this study, we aimed to investigate the role of the miR-17-92 cluster in thyroid cell differentiation and function. Methods:miR-17-92 silencing was performed using CRISPR/Cas9n-guided genomic editing of the miR-17-92 gene in the KTC2 ATC cell line, and miR-17-92 cluster or individual miRNAs were overexpressed in PCCl3 thyroid cells to evaluate the influence in thyroid cell differentiation and cell function. Results: In this study, we demonstrate that CRISPR/Cas9n gene editing of the miR-17-92 cluster results in promotion of thyroid follicular cell differentiation (NIS, thyroperoxidase, thyroglobulin, PAX8, and NKX2-1 expression) in the KTC2 ATC cell line and inhibits cell migration and proliferation by restoring transforming growth factor beta (TGF-ß) signaling pathway responsiveness. Moreover, induction of the miR-17-92 cluster in normal thyroid follicular cells strongly impairs thyroid differentiation and induces a pro-oncogenic effect by blocking TGF-ß signaling and increasing cell migration. Conclusions:miR-17-92 is a potent regulator of thyroid follicular cell differentiation, and CRISPR/Cas9n-mediated editing of the miR-17-92 gene efficiently blocks miR-17-92 expression in the KTC2 ATC cell line, resulting in improvement of thyroid differentiation. Thus, targeting miR-17-92 could provide a potential molecular approach to restoring thyroid cell differentiation and NIS expression in aggressive thyroid cancer.
Asunto(s)
Diferenciación Celular/fisiología , MicroARNs/genética , Carcinoma Anaplásico de Tiroides/genética , Células Epiteliales Tiroideas/patología , Glándula Tiroides/patología , Neoplasias de la Tiroides/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , MicroARNs/metabolismo , Carcinoma Anaplásico de Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patologíaRESUMEN
During the past decade, RNA-guided Cas9 nuclease from microbial clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) has become a powerful tool for gene editing of human pluripotent stem cells (PSCs). Using paired CRISPR/Cas9 nickases (CRISPR/Cas9n) it is furthermore possible to reduce off-target effects that may typically occur with traditional CRISPR/Cas9 systems while maintaining high on-target efficiencies. With this technology and a well-designed homology-directed repair vector (HDR), we are now able to integrate transgenes into specific gene loci of PSCs in an allele conserving way. In this protocol we describe CRISPR/Cas9n design and homology directed repair vector design, transfection of human pluripotent stem cells and selection and expansion of generated cell clones. © 2020 The Authors. Basic Protocol 1: Repair template design and CRISPR/Cas9n construction Basic Protocol 2: Transfection of human pluripotent stem cells by electroporation Basic Protocol 3: Genotyping of generated cell clones.
Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Cultivo de Célula/métodos , Genes Reporteros , Células Madre Pluripotentes/metabolismo , Reparación del ADN por Recombinación , Antibacterianos/farmacología , Línea Celular , Células Clonales , Electroporación , Técnicas de Genotipaje , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Reparación del ADN por Recombinación/efectos de los fármacos , TransfecciónRESUMEN
Clostridium beijerinckii, a promising industrial microorganism for butanol production, suffers from low butanol titer and lack of high-efficiency genetical engineering toolkit. A few histidine kinases (HKs) responsible for Spo0A phosphorylation have been demonstrated as functionally important components in regulating butanol biosynthesis in solventogenic clostridia such as C. acetobutylicum, but no study about HKs has been conducted in C. beijerinckii. In this study, six annotated but uncharacterized candidate HK genes sharing partial homologies (no less than 30%) with those in C. acetobutylicum were selected based on sequence alignment. The encoding region of these HK genes were deleted with CRISPR-Cas9n-based genome editing technology. The deletion of cbei2073 and cbei4484 resulted in significant change in butanol biosynthesis, with butanol production increased by 40.8 and 17.3% (13.8 g/L and 11.5 g/L vs. 9.8 g/L), respectively, compared to the wild-type. Faster butanol production rates were observed, with butanol productivity greatly increased by 40.0 and 20.0%, respectively, indicating these two HKs are important in regulating cellular metabolism in C. beijerinckii. In addition, the sporulation frequencies of two HKs inactivated strains decreased by 96.9 and 77.4%, respectively. The other four HK-deletion (including cbei2087, cbei2435, cbei4925, and cbei1553) mutant strains showed few phenotypic changes compared with the wild-type. This study demonstrated the role of HKs on sporulation and solventogenesis in C. beijerinckii, and provided a novel engineering strategy of HKs for improving metabolite production. The hyper-butanol-producing strains generated in this study have great potentials in industrial biobutanol production.
RESUMEN
E-cadherin is an adherens junction protein that forms intercellular contacts in epithelial cells. Downregulation of E-cadherin is frequently observed in epithelial tumors and it is a hallmark of epithelial-mesenchymal transition (EMT). However, recent findings suggest that E-cadherin plays a more complex role in certain types of cancers. Previous studies investigating the role of E-cadherin mainly used gene-knockdown systems; therefore, we used the CRISPR/Cas9n system to develop E-cadherin-knockout (EcadKO) ovarian cancer RMG-1â¯cell to clarify the role of E-cadherin in RMG-1â¯cells. EcadKO RMG-1â¯cells demonstrated a complete loss of the adherens junctions and failed to form cell clusters. Cell-extracellular matrix (ECM) interactions were increased in EcadKO RMG-1â¯cells. Upregulation of integrin beta1 and downregulation of collagen 4 were confirmed. EcadKO RMG-1â¯cells showed decreased ß-catenin levels and decreased expression of its transcriptional target cyclin D1. Surprisingly, a marked decrease in the migratory ability of EcadKO RMG-1â¯cells was observed and the cellular response to Rho GTPase inhibitors was diminished. Thus, we demonstrated that E-cadherin in RMG-1â¯cells is indispensable for ß-catenin expression and ß-catenin mediated transcription and Rho GTPase-regulated directionally persistent cell migration.
RESUMEN
BACKGROUND: Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in multiplex genome editing technologies. However, simultaneously modulating multiple genes on the chromosome remains challenging in Bacillus subtilis. Thus, developing an efficient and convenient method for B. subtilis multiplex genome editing is imperative. RESULTS: Here, we developed a CRISPR/Cas9n-based multiplex genome editing system for iterative genome editing in B. subtilis. This system enabled us to introduce various types of genomic modifications with more satisfying efficiency than using CRISPR/Cas9, especially in multiplex gene editing. Our system achieved at least 80% efficiency for 1-8 kb gene deletions, at least 90% efficiency for 1-2 kb gene insertions, near 100% efficiency for site-directed mutagenesis, 23.6% efficiency for large DNA fragment deletion and near 50% efficiency for three simultaneous point mutations. The efficiency for multiplex gene editing was further improved by regulating the nick repair mechanism mediated by ligD gene, which finally led to roughly 65% efficiency for introducing three point mutations on the chromosome. To demonstrate its potential, we applied our system to simultaneously fine-tune three genes in the riboflavin operon and significantly improved the production of riboflavin in a single cycle. CONCLUSIONS: We present not only the iterative CRISPR/Cas9n system for B. subtilis but also the highest efficiency for simultaneous modulation of multiple genes on the chromosome in B. subtilis reported to date. We anticipate this CRISPR/Cas9n mediated system to greatly enhance the optimization of diverse biological systems via metabolic engineering and synthetic biology.
RESUMEN
Perturbations in stress granule (SG) dynamics may be at the core of amyotrophic lateral sclerosis (ALS). Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Drosophila/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Antidepresivos/farmacología , Antipiréticos/farmacología , Autofagia/genética , Sistemas CRISPR-Cas , Drosophila , Evaluación Preclínica de Medicamentos , Proteínas Fluorescentes Verdes/genética , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genéticaRESUMEN
To study the biological function of DNAH2 (Homo sapiens dynein, axonemal, heavy chain 2) gene, we constructed human stable U2OS cell line of DNAH2 gene knockout through CRISPR/Cas9n double nick system. The A, B sgRNAs (Single guide RNA) and complementary strands were designed and synthesized. The double-stranded structures were formed during annealing, and connected with Bbsâ cohesive ends-containing pX462 linear vector to construct the recombinant eukaryotic expression plasmids, including pX462-DNAH2-A and pX462-DNAH2-B. After the co-transfection of the two plasmids into U2OS cells, the addition of puromycin and limiting dilution method were used to obtain positive monoclonal cell line. Western blotting assay was then performed to detect the expression of DNAH2 protein, and PCR-sequencing technology was finally utilized to analyze the mutation feature. The results showed that A, B sgRNAs duplex was successfully inserted into pX462 vector, and DNAH2 protein was not expressed and DNAH2 gene suffered from the frame-shift mutation in U2OS-DNAH2-KO monoclonal cell line. These demonstrated that DNAH2 knockout U2OS stable cell line was successfully constructed through CRISPR/Cas9n double nick system, which providing a useful tool for the study of DNAH2 gene.
Asunto(s)
Dineínas Axonemales/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Inactivación de Genes , Línea Celular Tumoral , Vectores Genéticos , Humanos , Plásmidos , ARN Guía de Kinetoplastida , TransfecciónRESUMEN
To gain more insights into the rice base editor (rBE3 and rBE4), we evaluated the mutation efficiency, off-target and inheritance of OsSERK1(D428N) and pi-ta(S918F) genes modified with rBE endonucleases. We predicted and analyzed the putative off-target sites of the sgRNA designed for OsSERK1(D428N) and pi-ta(S918F) by PCR amplification and Sanger sequencing. Then we further characterized the inheritance and stability of targeted base mutations and T-DNA segregation in the progeny of the self-fertilized T0 plants. Analysis of the DNA sequencing data of T0 plants of OsSERK1(D428N) revealed no nucleotide change at any of the four potential off-target sites. For OsSERK1(D428N) and Os08g07774 carry the same sgRNA targeting sites, base substitution at both two loci were detected at a frequency of 41.67%. The targeted base mutations could be transmitted readily to T1 progeny. Furthermore, genetic segregation caused the loss of T-DNA at a frequency between 25.0% and 40.9% in the T1 transgenic plants of OsSERK1(D428N) and pi-ta(S918F). These results demonstrated that the rBE3 and rBE4 systems could mediate specifically targeted base editing in one- or multi-site, and the targeted base editing could be stably inherited to next generation.