Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 32(24): 3342-3352, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712888

RESUMEN

Single nucleotide variants in the general population are common genomic alterations, where the majority are presumed to be silent polymorphisms without known clinical significance. Using human induced pluripotent stem cell (hiPSC) cerebral organoid modeling of the 1.4 megabase Neurofibromatosis type 1 (NF1) deletion syndrome, we previously discovered that the cytokine receptor-like factor-3 (CRLF3) gene, which is co-deleted with the NF1 gene, functions as a major regulator of neuronal maturation. Moreover, children with NF1 and the CRLF3L389P variant have greater autism burden, suggesting that this gene might be important for neurologic function. To explore the functional consequences of this variant, we generated CRLF3L389P-mutant hiPSC lines and Crlf3L389P-mutant genetically engineered mice. While this variant does not impair protein expression, brain structure, or mouse behavior, CRLF3L389P-mutant human cerebral organoids and mouse brains exhibit impaired neuronal maturation and dendrite formation. In addition, Crlf3L389P-mutant mouse neurons have reduced dendrite lengths and branching, without any axonal deficits. Moreover, Crlf3L389P-mutant mouse hippocampal neurons have decreased firing rates and synaptic current amplitudes relative to wild type controls. Taken together, these findings establish the CRLF3L389P variant as functionally deleterious and suggest that it may be a neurodevelopmental disease modifier.


Asunto(s)
Células Madre Pluripotentes Inducidas , Niño , Humanos , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Receptores de Citocinas/metabolismo , Nucleótidos/metabolismo
2.
J Virol ; 97(1): e0179222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36515543

RESUMEN

The cytokine receptor-like factor 3 (Crlf3) belongs to the orphan class I cytokine receptors and is identified as a neuroprotective erythropoietin receptor. In previous studies of Crlf3, few focused on its role in innate immunity. Therefore, this study explored the regulatory role of Crlf3 in innate immunity. TANK-binding kinase 1 (TBK1) is a vital adaptor protein for the activation of the RLRs-MVAS-IRF3 antiviral signaling axis; thus, its expression and activity must be tightly regulated to maintain immune homeostasis and avoid undesirable effects. Here, we report that Crlf3 is a negative regulator of type I interferon production. The expression of Crlf3 is induced by poly(I·C) or Siniperca chuatsi rhabdovirus (SCRV) treatment. Silencing of Crlf3 enhanced poly(I·C)- and SCRV-induced type I interferon production, whereas overexpression of Crlf3 suppressed type I interferon production. Mechanistically, Crlf3 interacted with TBK1 via its N domain and then inhibited type I interferon production by promoting TBK1 proteasomal degradation through K48-linked polyubiquitination. Our study shows that Crlf3 is a key factor for viral escape from innate antiviral immunity in fish and provides a new perspective on mammalian resistance to viral invasion. IMPORTANCE The expression of Crlf3 was upregulated with SCRV invasion, which proved that Crlf3 was involved in the regulation of the antiviral immune response. In this study, we found that the existence of Crlf3 promoted the replication of SCRV. Therefore, it is reasonable to believe that SCRV evades innate immune attack with the assistance of Crlf3. In addition, we report that Crlf3 negatively regulates interferon (IFN) induction by promoting the degradation of TBK1 in fish. We showed that Crlf3 is evenly distributed in the cytoplasm and interacts with TBK1. Further studies showed that Crlf3 specifically mediates K48-linked ubiquitination of TBK1 and promotes TBK1 degradation, resulting in a marked inhibition of retinoic acid-inducible gene I (RIG-I) downstream signaling.


Asunto(s)
Peces , Inmunidad Innata , Receptores de Citocinas , Infecciones por Rhabdoviridae , Animales , Fosforilación , Receptores de Citocinas/inmunología , Transducción de Señal , Peces/inmunología , Peces/virología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Peces/metabolismo , Rhabdoviridae , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Interferón Tipo I/inmunología
3.
Front Mol Neurosci ; 16: 1154509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168680

RESUMEN

The evolutionary conserved orphan cytokine receptor-like factor 3 (CRLF3) has been implicated in human disease, vertebrate hematopoiesis and insect neuroprotection. While its specific functions are elusive, experimental evidence points toward a general role in cell homeostasis. Erythropoietin (Epo) is a major regulator of vertebrate hematopoiesis and a general cytoprotective cytokine. Erythropoietic functions mediated by classical Epo receptor are understood in great detail whereas Epo-mediated cytoprotective mechanisms are more complex due to involvement of additional Epo receptors and a non-erythropoietic splice variant with selectivity for certain receptors. In the present study, we show that the human CRLF3 mediates neuroprotection upon activation with the natural Epo splice variant EV-3. We generated CRLF3 knock-out iPSC lines and differentiated them toward the neuronal lineage. While apoptotic death of rotenone-challenged wild type iPSC-derived neurons was prevented by EV-3, EV-3-mediated neuroprotection was absent in CRLF3 knock-out neurons. Rotenone-induced apoptosis and EV-3-mediated neuroprotection were associated with differential expression of pro-and anti-apoptotic genes. Our data characterize human CRLF3 as a receptor involved in Epo-mediated neuroprotection and identify CRLF3 as the first known receptor for EV-3.

4.
Front Immunol ; 13: 910428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795682

RESUMEN

Cytokine receptor-like factor 3 (CRLF3) is an ancient protein conserved across metazoans that contains an archetypal cytokine receptor homology domain (CHD). This domain is found in cytokine receptors present in bilateria, including higher vertebrates, that play key roles in a variety of developmental and homeostatic processes, particularly relating to blood and immune cells. However, understanding of CRLF3 itself remains very limited. This study aimed to investigate this evolutionarily significant protein by studying its embryonic expression and function in early development, particularly of blood and immune cells, using zebrafish as a model. Expression of crlf3 was identified in mesoderm-derived tissues in early zebrafish embryos, including the somitic mesoderm and both anterior and posterior lateral plate mesoderm. Later expression was observed in the thymus, brain, retina and exocrine pancreas. Zebrafish crlf3 mutants generated by genome editing technology exhibited a significant reduction in primitive hematopoiesis and early definitive hematopoiesis, with decreased early progenitors impacting on multiple lineages. No other obvious phenotypes were observed in the crlf3 mutants.


Asunto(s)
Hematopoyesis , Pez Cebra , Animales , Hematopoyesis/genética , Mesodermo , Receptores de Citocinas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Cell Rep ; 36(1): 109315, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233200

RESUMEN

Neurodevelopmental disorders are often caused by chromosomal microdeletions comprising numerous contiguous genes. A subset of neurofibromatosis type 1 (NF1) patients with severe developmental delays and intellectual disability harbors such a microdeletion event on chromosome 17q11.2, involving the NF1 gene and flanking regions (NF1 total gene deletion [NF1-TGD]). Using patient-derived human induced pluripotent stem cell (hiPSC)-forebrain cerebral organoids (hCOs), we identify both neural stem cell (NSC) proliferation and neuronal maturation abnormalities in NF1-TGD hCOs. While increased NSC proliferation results from decreased NF1/RAS regulation, the neuronal differentiation, survival, and maturation defects are caused by reduced cytokine receptor-like factor 3 (CRLF3) expression and impaired RhoA signaling. Furthermore, we demonstrate a higher autistic trait burden in NF1 patients harboring a deleterious germline mutation in the CRLF3 gene (c.1166T>C, p.Leu389Pro). Collectively, these findings identify a causative gene within the NF1-TGD locus responsible for hCO neuronal abnormalities and autism in children with NF1.


Asunto(s)
Cerebro/patología , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Neurogénesis/genética , Organoides/patología , Receptores de Citocinas/metabolismo , Trastorno Autístico/genética , Línea Celular , Proliferación Celular , Dendritas/metabolismo , Dendritas/patología , Activación Enzimática , Eliminación de Gen , Genes de Neurofibromatosis 1 , Humanos , Mutación/genética , Transducción de Señal , Proteínas ras/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
6.
Genes (Basel) ; 12(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681033

RESUMEN

Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions.


Asunto(s)
Eliminación de Gen , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Deleción Cromosómica , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Mutación , Neurofibromatosis 1/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA