Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240448

RESUMEN

Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.


Asunto(s)
COVID-19 , Humanos , Inyecciones Intradérmicas , Inyecciones a Chorro , COVID-19/prevención & control , SARS-CoV-2 , Inyecciones Intramusculares
2.
Int J Cancer ; 142(11): 2335-2343, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29313971

RESUMEN

Adoptive cell transfer (ACT) is an emerging and promising cancer immunotherapy that has been improved through various approaches. Here, we described the distinctive characteristics and functions of tumor Ag-specific effector CD8+ T-cells, co-cultured with a tumor-specific peptide and a stimulatory anti-OX40 antibody, before being used for ACT therapy in tumor-bearing mouse recipients. Splenic T-cells were obtained from wild-type FVB/N mice that had been injected with a HER2/neu (neu)-expressing tumor and a neu-vaccine. The cells were then incubated for 7 days in vitro with a major histocompatibility complex (MHC) class I peptide derived from neu, in the presence or absence of an agonistic anti-OX40 monoclonal antibody, before CD8+ T cells were isolated for use in ACT therapy. The proliferative ability of OX40-driven tumor Ag-specific effector CD8+ T-cells in vitro was less than that of non-OX40-driven tumor Ag-specific effector CD8+ T-cells, but they expressed significantly more early T-cell differentiation markers, such as CD27, CD62L and CCR7, and significantly higher levels of Bcl-2, an anti-apoptotic protein. These OX40-driven tumor Ag-specific effector CD8+ T-cells, when transferred into tumor-bearing recipients, demonstrated potent proliferation capability and successfully eradicated the established tumor. In addition, these cells exhibited long-term antitumor function, and appeared to be established as memory T-cells. Our findings suggest a possible in vitro approach for improving the efficacy of ACT, which is simple, requires only a small amount of modulator, and can potentially avoid several toxicities associated with co-stimulation in vivo.


Asunto(s)
Antígenos de Neoplasias/inmunología , Receptores OX40/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Traslado Adoptivo , Animales , Biomarcadores , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Proliferación Celular , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA