Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(6): e21579, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960001

RESUMEN

Endoplasmic reticulum (ER) Ca2+ homeostasis relies on an appropriate balance between efflux- and influx-channel activity responding to dynamic changes of intracellular Ca2+ levels. Dysregulation of this complex signaling network has been shown to contribute to neuronal and photoreceptor death in neuro- and retinal degenerative diseases, respectively. In mice with cone cyclic nucleotide-gated (CNG) channel deficiency, a model of achromatopsia/cone dystrophy, cones display early-onset ER stress-associated apoptosis and protein mislocalization. Cones in these mice also show reduced cytosolic Ca2+ level and subsequent elevation in the ER Ca2+ -efflux-channel activity, specifically the inositol-1,4,5-trisphosphate receptor type 1 (IP3 R1), and deletion of IP3 R1 results in preservation of cones. This work investigated how preservation of ER Ca2+ stores leads to cone protection. We examined the effects of cone specific deletion of IP3 R1 on ER stress responses/cone death, protein localization, and ER proteostasis/ER-associated degradation. We demonstrated that deletion of IP3 R1 improves trafficking of cone-specific proteins M-/S-opsin and phosphodiesterase 6C to cone outer segments and reduces localization to cone inner segments. Consistent with the improved protein localization, deletion of IP3 R1 results in increased ER retrotranslocation protein expression, reduced proteasome subunit expression, reduced ER stress/cone death, and reduced retinal remodeling. We also observed the enhanced ER retrotranslocation in mice that have been treated with a chemical chaperone, supporting the connection between improved ER retrotranslocation/proteostasis and alleviation of ER stress. Findings from this work demonstrate the importance of ER Ca2+ stores in ER proteostasis and protein trafficking/localization in photoreceptors, strengthen the link between dysregulation of ER Ca2+ homeostasis and ER stress/cone degeneration, and support an involvement of improved ER proteostasis in ER Ca2+ preservation-induced cone protection; thereby identifying IP3 R1 as a critical mediator of ER stress and protein mislocalization and as a potential target to preserve cones in CNG channel deficiency.


Asunto(s)
Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/deficiencia , Retículo Endoplásmico/patología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Proteostasis , Retina/patología , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Retina/metabolismo , Transducción de Señal
2.
Adv Exp Med Biol ; 1383: 229-241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36587162

RESUMEN

Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly "fibroblast-like" cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl- channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.


Asunto(s)
Células Intersticiales de Cajal , Células Intersticiales de Cajal/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Músculo Liso/fisiología , Tracto Gastrointestinal/fisiología , Intestino Delgado/metabolismo
3.
J Cell Mol Med ; 25(8): 3922-3934, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33619882

RESUMEN

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca2+ -handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to ß-adrenergic stimulation. To test the hypothesis, [Ca2+ ]i transients and contractions were recorded from healthy and DMD-CMs. While in healthy CMs (HC) isoproterenol caused a prominent positive inotropic effect, DMD-CMs displayed a blunted inotropic response. Next, we tested the functionality of the sarcoplasmic reticulum (SR) by measuring caffeine-induced Ca2+ release. In contrast to HC, DMD-CMs exhibited reduced caffeine-induced Ca2+ signal amplitude and recovery time. In support of the depleted SR Ca2+ stores hypothesis, in DMD-CMs the negative inotropic effects of ryanodine and cyclopiazonic acid were smaller than in HC. RNA-seq analyses demonstrated that in DMD CMs the RNA-expression levels of specific subunits of the L-type calcium channel, the ß1-adrenergic receptor (ADRß1) and adenylate cyclase were down-regulated by 3.5-, 2.8- and 3-fold, respectively, which collectively contribute to the depressed ß-adrenergic responsiveness.


Asunto(s)
Adrenérgicos/farmacología , Calcio/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/patología , Distrofia Muscular de Duchenne/patología , Contracción Miocárdica , Miocitos Cardíacos/patología , Adulto , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Diferenciación Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , RNA-Seq , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
4.
FASEB J ; 34(8): 10073-10095, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32539213

RESUMEN

Colonic intramuscular interstitial cells of Cajal (ICC-IM) are associated with cholinergic varicosities, suggesting a role in mediating excitatory neurotransmission. Ca2+ release in ICC-IM activates Ano1, a Ca2+ -activated Cl- conductance, causing tissue depolarization and increased smooth muscle excitability. We employed Ca2+ imaging of colonic ICC-IM in situ, using mice expressing GCaMP6f in ICC to evaluate ICC-IM responses to excitatory neurotransmission. Expression of muscarinic type 2, 3 (M2 , M3 ), and NK1 receptors were enriched in ICC-IM. NK1 receptor agonists had minimal effects on ICC-IM, whereas neostigmine and carbachol increased Ca2+ transients. These effects were reversed by DAU 5884 (M3 receptor antagonist) but not AF-DX 116 (M2 receptor antagonist). Electrical field stimulation (EFS) in the presence of L-NNA and MRS 2500 enhanced ICC-IM Ca2+ transients. Responses were blocked by atropine or DAU 5884, but not AF-DX 116. ICC-IM responses to EFS were ablated by inhibiting Ca2+ stores with cyclopiazonic acid and reduced by inhibiting Ca2+ influx via Orai channels. Contractions induced by EFS were reduced by an Ano1 channel antagonist, abolished by DAU 5884, and unaffected by AF-DX 116. Colonic ICC-IM receive excitatory inputs from cholinergic neurons via M3 receptor activation. Enhancing ICC-IM Ca2+ release and Ano1 activation contributes to excitatory responses of colonic muscles.


Asunto(s)
Calcio/metabolismo , Colinérgicos/metabolismo , Colon/metabolismo , Células Intersticiales de Cajal/metabolismo , Potenciales de la Membrana/fisiología , Músculo Liso/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Anoctamina-1/metabolismo , Colon/fisiología , Estimulación Eléctrica/métodos , Células Intersticiales de Cajal/fisiología , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Liso/fisiología , Transmisión Sináptica/fisiología
5.
J Physiol ; 598(9): 1649-1654, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735245

RESUMEN

Action potential driven neuronal signalling drives several electrical and biochemical processes in the nervous system. However, neurons can maintain synaptic communication and signalling under resting conditions independently of activity. Importantly, these processes are regulated by Ca2+ signals that occur at rest. Several studies have suggested that opening of voltage-gated Ca2+ channels near resting membrane potentials, activation of NMDA receptors in the absence of depolarization or Ca2+ release from intracellular stores can drive neurotransmitter release as well as subsequent signalling in the absence of action potentials. Interestingly, recent studies have demonstrated that manipulation of resting neuronal Ca2+ signalling yielded pronounced homeostatic synaptic plasticity, suggesting a critical role for this resting form of signalling in regulation of synaptic efficacy and neuronal homeostasis. Given their robust impact on synaptic efficacy and neuronal signalling, neuronal resting Ca2+ signals warrant further mechanistic analysis that includes the potential role of store-operated Ca2+ entry in these processes.


Asunto(s)
Calcio , Neuronas , Potenciales de Acción , Potenciales de la Membrana , Transmisión Sináptica
6.
J Physiol ; 598(4): 651-681, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31811726

RESUMEN

KEY POINTS: Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC. ABSTRACT: Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.


Asunto(s)
Anoctamina-1/fisiología , Relojes Biológicos , Señalización del Calcio , Colon/citología , Células Intersticiales de Cajal/fisiología , Músculo Liso/fisiología , Animales , Anoctamina-1/antagonistas & inhibidores , Colon/fisiología , Ratones , Ratones Endogámicos C57BL , Contracción Muscular
7.
Am J Physiol Renal Physiol ; 318(2): F496-F505, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904286

RESUMEN

Urethral smooth muscle (USM) generates tone to prevent urine leakage from the bladder during filling. USM tone has been thought to be a voltage-dependent process, relying on Ca2+ influx via voltage-dependent Ca2+ channels in USM cells, modulated by the activation of Ca2+-activated Cl- channels encoded by Ano1. However, recent findings in the mouse have suggested that USM tone is voltage independent, relying on Ca2+ influx through Orai channels via store-operated Ca2+ entry (SOCE). We explored if this pathway also occurred in the pig using isometric tension recordings of USM tone. Pig USM strips generated myogenic tone, which was nearly abolished by the Cav1.2 channel antagonist nifedipine and the ATP-dependent K+ channel agonist pinacidil. Pig USM tone was reduced by the Orai channel blocker GSK-7975A. Electrical field stimulation (EFS) led to phentolamine-sensitive contractions of USM strips. Contractions of pig USM were also induced by phenylephrine. Phenylephrine-evoked and EFS-evoked contractions of pig USM were reduced by ~50-75% by nifedipine and ~30% by GSK-7975A. Inhibition of Ano1 channels had no effect on tone or EFS-evoked contractions of pig USM. In conclusion, unlike the mouse, pig USM exhibited voltage-dependent tone and agonist/EFS-evoked contractions. Whereas SOCE plays a role in generating tone and agonist/neural-evoked contractions in both species, this dominates in the mouse. Tone and agonist/EFS-evoked contractions of pig USM are the result of Ca2+ influx primarily through Cav1.2 channels, and no evidence was found supporting a role of Ano1 channels in modulating these mechanisms.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Contracción Isométrica , Músculo Liso/metabolismo , Uretra/metabolismo , Animales , Benzamidas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Activados por la Liberación de Calcio/antagonistas & inhibidores , Señalización del Calcio/efectos de los fármacos , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Contracción Isométrica/efectos de los fármacos , Masculino , Músculo Liso/efectos de los fármacos , Nifedipino/farmacología , Fenilefrina/farmacología , Pirazoles/farmacología , Sus scrofa , Uretra/efectos de los fármacos
8.
Development ; 144(8): 1484-1489, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28289132

RESUMEN

Successful completion of animal development is fundamentally reliant on nutritional cues. Surviving periods of nutritional insufficiency requires adaptations that are coordinated, in part, by neural circuits. As neuropeptides secreted by neuroendocrine (NE) cells modulate neural circuits, we investigated NE cell function during development under nutrient stress. Starved Drosophila larvae exhibited reduced pupariation if either insulin signaling or IP3/Ca2+ signaling were downregulated in NE cells. Moreover, an IP3R (inositol 1,4,5-trisphosphate receptor) loss-of-function mutant displayed reduced protein synthesis, which was rescued by overexpression of either InR (insulin receptor) or IP3R in NE cells of the mutant, suggesting that the two signaling pathways might be functionally compensatory. Furthermore, cultured IP3R mutant NE cells, but not neurons, exhibited reduced protein translation. Thus cell-specific regulation of protein synthesis by IP3R in NE cells influences protein metabolism. We propose that this regulation helps developing animals survive in poor nutritional conditions.


Asunto(s)
Calcio/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Neuroendocrinas/citología , Células Neuroendocrinas/metabolismo , Estrés Fisiológico , Animales , Señalización del Calcio/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Alimentos , Espacio Intracelular/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Mutación/genética , Biosíntesis de Proteínas/efectos de los fármacos , Pupa/efectos de los fármacos , Pupa/crecimiento & desarrollo , Receptor de Insulina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Sacarosa/farmacología
9.
Arch Toxicol ; 94(3): 845-855, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32125443

RESUMEN

Severe hyperbilirubinemia leads to bilirubin encephalopathy in neonates, causing irreversible neurological sequelae. We investigated the nature of neuronal selective vulnerability to unconjugated bilirubin (UCB) toxicity. The maintenance of intracellular calcium homeostasis is crucial for neuron survival. Calcium release from endoplasmic reticulum (ER) during ER-stress can lead to apoptosis trough the activation of Caspase-12. By live calcium imaging we monitored the generation of calcium signals in dissociated hippocampal neurons and glial cells exposed to increasing UCB concentrations. We showed the ability of UCB to alter intracellular calcium homeostasis, inducing the appearance of repetitive intracellular calcium oscillations. The contribution of intracellular calcium stores and the induction and activation of proteins involved in the apoptotic calcium-dependent signaling were also assessed. Thapsigargin, a specific inhibitor of Sarco/endoplasmic reticulum ATPase (SERCA) pumps, significantly reduced the duration of Ca2+ oscillation associated with UCB exposure indicating that UCB strongly interfered with the reticulum calcium stores. On the contrary, in pure astrocyte cultures, spontaneous Ca2+ transient duration was not altered by UCB. The protein content of GRP78, AT6, CHOP, Calpain and Caspase-12 of neuronal cells treated with UCB for 24 h was at least twofold higher compared to controls. Calcium-dependent Calpain and Caspase-12 induction by UCB were significantly reduced by 50% and 98%, respectively when cells were pretreated with the ER-stress inhibitor 4-PBA. These results show the strong and direct interference of UCB with neuronal intracellular Ca2+ dynamics, suggesting ER Ca2+ stores as a primary target of UCB toxicity with the activation of the apoptotic ER-stress-dependent pathway.


Asunto(s)
Bilirrubina/metabolismo , Calcio/metabolismo , Homeostasis/fisiología , Sistema Nervioso/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Hipocampo , Homeostasis/efectos de los fármacos , Humanos
10.
J Physiol ; 597(14): 3587-3617, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31124144

RESUMEN

KEY POINTS: Colonic intramuscular interstitial cells of Cajal (ICC-IM) exhibit spontaneous Ca2+ transients manifesting as stochastic events from multiple firing sites with propagating Ca2+ waves occasionally observed. Firing of Ca2+ transients in ICC-IM is not coordinated with adjacent ICC-IM in a field of view or even with events from other firing sites within a single cell. Ca2+ transients, through activation of Ano1 channels and generation of inward current, cause net depolarization of colonic muscles. Ca2+ transients in ICC-IM rely on Ca2+ release from the endoplasmic reticulum via IP3 receptors, spatial amplification from RyRs and ongoing refilling of ER via the sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase. ICC-IM are sustained by voltage-independent Ca2+ influx via store-operated Ca2+ entry. Some of the properties of Ca2+ in ICC-IM in the colon are similar to the behaviour of ICC located in the deep muscular plexus region of the small intestine, suggesting there are functional similarities between these classes of ICC. ABSTRACT: A component of the SIP syncytium that regulates smooth muscle excitability in the colon is the intramuscular class of interstitial cells of Cajal (ICC-IM). All classes of ICC (including ICC-IM) express Ca2+ -activated Cl- channels, encoded by Ano1, and rely upon this conductance for physiological functions. Thus, Ca2+ handling in ICC is fundamental to colonic motility. We examined Ca2+ handling mechanisms in ICC-IM of murine proximal colon expressing GCaMP6f in ICC. Several Ca2+ firing sites were detected in each cell. While individual sites displayed rhythmic Ca2+ events, the overall pattern of Ca2+ transients was stochastic. No correlation was found between discrete Ca2+ firing sites in the same cell or in adjacent cells. Ca2+ transients in some cells initiated Ca2+ waves that spread along the cell at ∼100 µm s-1 . Ca2+ transients were caused by release from intracellular stores, but depended strongly on store-operated Ca2+ entry mechanisms. ICC Ca2+ transient firing regulated the resting membrane potential of colonic tissues as a specific Ano1 antagonist hyperpolarized colonic muscles by ∼10 mV. Ca2+ transient firing was independent of membrane potential and not affected by blockade of L- or T-type Ca2+ channels. Mechanisms regulating Ca2+ transients in the proximal colon displayed both similarities to and differences from the intramuscular type of ICC in the small intestine. Similarities and differences in Ca2+ release patterns might determine how ICC respond to neurotransmission in these two regions of the gastrointestinal tract.


Asunto(s)
Señalización del Calcio/fisiología , Colon/metabolismo , Células Intersticiales de Cajal/metabolismo , Animales , Anoctamina-1/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Intestino Delgado/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Músculo Liso/metabolismo , Transmisión Sináptica/fisiología
11.
Adv Exp Med Biol ; 1124: 313-328, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31183833

RESUMEN

Veins exhibit spontaneous contractile activity, a phenomenon generally termed vasomotion. This is mediated by spontaneous rhythmical contractions of mural cells (i.e. smooth muscle cells (SMCs) or pericytes) in the wall of the vessel. Vasomotion occurs through interconnected oscillators within and between mural cells, entraining their cycles. Pharmacological studies indicate that a key oscillator underlying vasomotion is the rhythmical calcium ion (Ca2+) release-refill cycle of Ca2+ stores. This occurs through opening of inositol 1,4,5-trisphosphate receptor (IP3R)- and/or ryanodine receptor (RyR)-operated Ca2+ release channels in the sarcoplasmic/endoplasmic (SR/ER) reticulum and refilling by the SR/ER reticulum Ca2+ATPase (SERCA). Released Ca2+ from stores near the plasma membrane diffuse through the cytosol to open Ca2+-activated chloride (Cl-) channels, this generating inward current through an efflux of Cl-. The resultant depolarisation leads to the opening of voltage-dependent Ca2+ channels and possibly increased production of IP3, which through Ca2+-induced Ca2+ release (CICR) of IP3Rs and/or RyRs and IP3R-mediated Ca2+ release provide a means by which store oscillators entrain their activity. Intercellular entrainment normally involves current flow through gap junctions that interconnect mural cells and in many cases this is aided by additional connectivity through the endothelium. Once entrainment has occurred the substantial Ca2+ entry that results from the near-synchronous depolarisations leads to rhythmical contractions of the mural cells, this often leading to vessel constriction. The basis for venous/venular vasomotion has yet to be fully delineated but could improve both venous drainage and capillary/venular absorption of blood plasma-associated fluids.


Asunto(s)
Señalización del Calcio , Contracción Muscular , Miocitos del Músculo Liso/fisiología , Venas/fisiología , Calcio/fisiología , Membrana Celular , Retículo Endoplásmico/fisiología , Humanos , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología
12.
Neurobiol Learn Mem ; 138: 21-30, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27470091

RESUMEN

Synaptopodin (SP) is a proline-rich actin-associated protein essential for the formation of a spine apparatus (SA) in dendritic spines. The SA consists of stacks of smooth endoplasmic reticulum (sER) contiguous with the meshwork of somatodendritic ER. Spines of SP-deficient mice contain sER but no SA, demonstrating that SP is necessary for the assembly of ER cisterns into the more complex SA organelle. Although the SA was described decades ago, its function was difficult to investigate and remained elusive, in part because reliable markers for the SA were missing. After SP was identified as an essential component and a reliable marker of the SA, a role of SP/SA in hippocampal synaptic plasticity could be firmly established using loss-of-function approaches. Further studies revealed that SP/SA participate in the regulation of Ca2+-dependent spine-specific Hebbian plasticity and in activity-dependent changes in the spine actin cytoskeleton. In this review we are summarizing recent progress made on SP/SA in Hebbian plasticity and discuss open questions such as causality, spatiotemporal dynamics and complementarity of SP/SA-dependent mechanisms. We are proposing that computational modeling of spine Ca2+-signaling and actin remodeling pathways could address some of these issues and could indicate future research directions. Moreover, reaction-diffusion simulations could help to identify key feedforward and feedback regulatory motifs regulating the switch between an LTP and an LTD signaling module in SP/SA-containing spines, thus helping to find a unified view of SP/SA action in Hebbian plasticity.


Asunto(s)
Espinas Dendríticas/fisiología , Hipocampo/fisiología , Proteínas de Microfilamentos/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Ratones , Modelos Neurológicos
13.
Korean J Physiol Pharmacol ; 21(2): 233-239, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28280417

RESUMEN

Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells.

14.
Muscle Nerve ; 52(4): 623-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25600698

RESUMEN

INTRODUCTION: Short-term plasticity of synaptic function is an important physiological control of transmitter release. Short-term plasticity can be regulated by intracellular calcium released by ryanodine and inositol triphosphate (IP3) receptors, but the role of these receptors at the neuromuscular junction is understood incompletely. METHODS: We measured short-term plasticity of evoked endplate potential (EPP) amplitudes from frog neuromuscular junctions treated with ryanodine, 2-aminoethoxydiphenylborane (2-APB), or 1-[6-[[(17ß)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U- 73122). RESULTS: Ryanodine decreases paired-pulse facilitation for intervals <20 ms and markedly decreases tetanic depression. Treatment with 2-APB reduces EPP amplitude, increases paired-pulse facilitation for intervals of <20 ms, and significantly reduces tetanic depression. U-73122 decreases EPP amplitude and decreases paired-pulse depression for intervals <20 ms. CONCLUSIONS: Ryanodine, IP3 receptors, and phospholipase C modulate short-term plasticity of transmitter release at the neuromuscular junction. These results suggest possible targets for improving the safety factor of neuromuscular transmission during repetitive activity of the neuromuscular junction.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Anuros , Biofisica , Compuestos de Boro/farmacología , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Electrofisiología , Estrenos/farmacología , Técnicas In Vitro , Unión Neuromuscular/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Pirrolidinonas/farmacología , Rianodina/farmacología
15.
Hippocampus ; 24(8): 1030-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24753100

RESUMEN

Thrombin and other clotting factors regulate long-term potentiation (LTP) in the hippocampus through the activation of the protease activated receptor 1 (PAR1) and consequent potentiation of N-methyl-d-aspartate receptor (NMDAR) functions. We have recently shown that the activation of PAR1 either by thrombin or the anticoagulant factor activated protein C (aPC) has differential effects on LTP. While thrombin activation of PAR1 induces an NMDAR-mediated slow onset LTP, which saturates the ability to induce further LTP in the exposed network, aPC stimulation of PAR1 enhances tetanus induced LTP through a voltage-gated calcium channels mediated mechanism. In this study, we addressed the mechanisms by which aPC enhances LTP in hippocampal slices. Using extracellular recordings, we show that a short tetanic stimulation, which does not induce LTP, is able to enhance plasticity in the presence of aPC through a mechanism that requires the activation of sphingosine-1 phosphate receptor 1 and intracellular Ca(2+) stores. These data identify aPC as a "metaplastic molecule", capable of shifting the threshold of LTP towards further potentiation. Our findings propose novel strategies to enhance plasticity in neurological diseases associated with the breakdown of the blood brain barrier and alterations in synaptic plasticity.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Proteína C/metabolismo , Receptor PAR-1/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Factores de Coagulación Sanguínea/metabolismo , Calcio/metabolismo , Estimulación Eléctrica , Hipocampo/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Esfingosina-1-Fosfato , Técnicas de Cultivo de Tejidos
16.
Am J Physiol Gastrointest Liver Physiol ; 306(3): G191-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284964

RESUMEN

Protein dystrophin is a component of the dystrophin-associated protein complex, which links the contractile machinery to the plasma membrane and to the extracellular matrix. Its absence leads to a condition known as Duchenne muscular dystrophy (DMD), a disease characterized by progressive skeletal muscle degeneration, motor disability, and early death. In mdx mice, the most common DMD animal model, loss of muscle cells is observed, but the overall disease alterations are less intense than in DMD patients. Alterations in gastrointestinal tissues from DMD patients and mdx mice are not yet completely understood. Thus, we investigated the possible relationships between morphological (light and electron microscopy) and contractile function (by recording the isometric contractile response) with alterations in Ca²âº handling in the ileum of mdx mice. We evidenced a 27% reduction in the ileal muscular layer thickness, a partial damage to the mucosal layer, and a partial damage to mitochondria of the intestinal myocytes. Functionally, the ileum from mdx presented an enhanced responsiveness during stretch, a mild impairment in both the electromechanical and pharmacomechanical signaling associated with altered calcium influx-induced contraction, with no alterations in the sarcoplasmic reticulum Ca²âº storage (maintenance of the caffeine and thapsigargin-induced contraction) compared with control animals. Thus, it is evidenced that the protein dystrophin plays an important role in the preservation of both the microstructure and ultrastructure of mice intestine, while exerting a minor but important role concerning the intestinal contractile responsiveness and calcium handling.


Asunto(s)
Distrofina/metabolismo , Intestinos/patología , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Intestinos/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Retículo Sarcoplasmático/metabolismo
17.
Cell Rep ; 43(1): 113628, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38160394

RESUMEN

Lysosomes and the endoplasmic reticulum (ER) are Ca2+ stores mobilized by the second messengers NAADP and IP3, respectively. Here, we establish Ca2+ signals between the two sources as fundamental building blocks that couple local release to global changes in Ca2+. Cell-wide Ca2+ signals evoked by activation of endogenous NAADP-sensitive channels on lysosomes comprise both local and global components and exhibit a major dependence on ER Ca2+ despite their lysosomal origin. Knockout of ER IP3 receptor channels delays these signals, whereas expression of lysosomal TPC2 channels accelerates them. High-resolution Ca2+ imaging reveals elementary events upon TPC2 opening and signals coupled to IP3 receptors. Biasing TPC2 activation to a Ca2+-permeable state sensitizes local Ca2+ signals to IP3. This increases the potency of a physiological agonist to evoke global Ca2+ signals and activate a downstream target. Our data provide a conceptual framework to understand how Ca2+ release from physically separated stores is coordinated.


Asunto(s)
Señalización del Calcio , Canales de Dos Poros , Señalización del Calcio/fisiología , Inositol/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Calcio/metabolismo , NADP/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato
18.
Cell Calcium ; 107: 102657, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36206580

RESUMEN

The depletion of the endoplasmic reticulum (ER) Ca 2+ stores is known to activate a Ca 2+ route of the plasma membrane known as store-operated Ca 2+ entry (SOCE). Stromal interaction molecules (STIM1-2) and Orai1-3 proteins are regarded as the central molecular core components of SOCE. In a recent article, Patel and colleagues have identified a new type of coupling linking the Ca 2+ status of the ER and the activity of pannexin 1 (Panx1) ion channels distinct from Orai. This work further illustrates that Orai channels are far from being the exclusive partners of STIM proteins since these ER Ca 2+ sensors interact with a large diversity of targets and control several biological responses independently of Orai channels. Patel et al present an exciting new perspective on the contribution of the ER Ca 2+ release that recruits distinct types of cell surface ion channels such as Ca 2+ -selective (Orai) and nonselective (Panx1) channels. This study provides new insight into the complexity of store-operated ion channels signalling. Future studies will be required to better understand the contribution of this neuronal store-operated Panx1 response in neuronal pathophysiology.


Asunto(s)
Calcio , Retículo Endoplásmico , Calcio/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Proteína ORAI1/metabolismo , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Señalización del Calcio/fisiología
19.
Andrology ; 9(4): 1227-1241, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33609309

RESUMEN

BACKGROUND: The signaling pathways of the intracellular second messengers cAMP and Ca2+ play a crucial role in numerous physiological processes in human spermatozoa. One such process is the acrosome reaction (AR), which is necessary for spermatozoa to traverse the egg envelope and to expose a fusogenic membrane allowing the egg-sperm fusion. Progesterone and zona pellucida elicit an intracellular Ca2+ increase that is needed for the AR in the mammalian spermatozoa. This increase is mediated by an initial Ca2+ influx but also by a release from intracellular Ca2+ stores. It is known that intracellular Ca2+ stores play a central role in the regulation of [Ca2+ ]i and in the generation of complex Ca2+ signals such as oscillations and waves. In the human spermatozoa, it has been proposed that the cAMP analog and specific agonist of Epac 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (2'-O-Me-cAMP) elicits an intracellular Ca2+ release involved in the AR. OBJECTIVE: To identify the molecular entities involved in the Ca2+ mobilization triggered by 2'-O-Me-cAMP in human spermatozoa. MATERIALS AND METHODS: In capacitated human spermatozoa, we monitored Ca2+ dynamics and the occurrence of the AR in real time using Fluo 3-AM and FM4-64 in a Ca2+ -free medium. RESULTS: Epac activation by 2'-O-Me-cAMP induced a Ca2+ wave that started in the midpiece and propagated to the acrosome region. This Ca2+ response was sensitive to rotenone, CGP, xestospongin, NED-19, and thapsigargin, suggesting the participation of different ion transporters (mitochondrial complex I and Na+ /Ca2+ exchanger, inositol 3-phosphate receptors, two-pore channels and internal store Ca2+ -ATPases). DISCUSSION: Our results suggest that Epac activation promotes a dynamic crosstalk between three different intracellular Ca2+ stores: the mitochondria, the redundant nuclear envelope, and the acrosome. CONCLUSION: The Ca2+ wave triggered by Epac activation is necessary to induce the AR and to enhance the flagellar beat.


Asunto(s)
Reacción Acrosómica/fisiología , Señalización del Calcio/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Espermatozoides/metabolismo , Humanos , Masculino
20.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119020, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798602

RESUMEN

Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 µM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.


Asunto(s)
Canales de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Calcio/fisiología , Señalización del Calcio/fisiología , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA