Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2203883119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914168

RESUMEN

L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.


Asunto(s)
Canales de Calcio Tipo L , Hipocampo , Plasticidad Neuronal , Edición de ARN , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Hipocampo/metabolismo , Mamíferos/metabolismo , Ratones , Plasticidad Neuronal/genética , Neuronas/metabolismo , Células Piramidales/metabolismo
2.
HNO ; 67(Suppl 2): 69-76, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31065762

RESUMEN

BACKGROUND: In the field of hearing research a variety of imaging techniques are available to study molecular and cellular structures of the cochlea. Most of them are based on decalcifying, embedding, and cutting of the cochlea. By means of scanning laser optical tomography (SLOT), the complete cochlea can be visualized without cutting. The Cav1.3-/- mice have already been extensively characterized and show structural changes in the inner ear. Therefore, they were used in this study as a model to investigate whether SLOT can detect structural differences in the murine cochlea. MATERIALS AND METHODS: Whole undissected cochleae from Cav1.3-/- and wild-type mice of various postnatal stages were immunostained and analyzed by SLOT. The results were compared to cochlea preparations that were immunostained and analyzed by fluorescence microscopy. In addition, cochlea preparations were stained with osmium tetraoxide. RESULTS: Visualization by SLOT showed that the staining of nerve fibers at P27 in Cav1.3-/- mice was almost absent compared to wild-type mice and earlier timepoints (P9). The analysis of cochlea preparations confirmed a reduction of the radial nerve fibers. In addition, a significantly reduced number of ribbon synapses per inner hair cell (IHC) at P20 and P27 in the apical part of the cochlea of Cav1.3-/- mice was detected. CONCLUSION: The visualization of whole non-dissected cochleae by SLOT is a suitable tool for the analysis of gross phenotypic changes, as demonstrated by means of the Cav1.3-/- mouse model. For the analysis of finer structures of the cochlea, however, further methods must be used.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas/ultraestructura , Tomografía Óptica , Animales , Modelos Animales de Enfermedad , Ratones , Sinapsis , Tomografía Óptica/métodos
3.
HNO ; 67(8): 590-599, 2019 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-30963223

RESUMEN

BACKGROUND: In the field of hearing research a variety of imaging techniques are available to study molecular and cellular structures of the cochlea. Most of them are based on decalcifying, embedding, and cutting of the cochlea. By means of scanning laser optical tomography (SLOT), the complete cochlea can be visualized without cutting. The Cav1.3-/- mice have already been extensively characterized and show structural changes in the inner ear. Therefore, they were used in this study as a model to investigate whether SLOT can detect structural differences in the murine cochlea. MATERIALS AND METHODS: Whole undissected cochleae from Cav1.3-/- and wildtype mice of various postnatal stages were immunostained and analyzed by SLOT. The results were compared to cochlea preparations that were immunostained and analyzed by fluorescence microscopy. In addition, cochlea preparations were stained with osmium tetraoxide. RESULTS: Visualization by SLOT showed that the staining of nerve fibers at P27 in Cav1.3-/- mice was almost absent compared to wildtype mice and earlier timepoints (P9). The analysis of cochlea preparations confirmed a reduction of the radial nerve fibers. In addition, a significantly reduced number of ribbon synapses per inner hair cell (IHC) at P20 and P27 in the apical part of the cochlea of Cav1.3-/- mice was detected. CONCLUSION: The visualization of whole non-dissected cochleae by SLOT is a suitable tool for the analysis of gross phenotypic changes, as demonstrated by means of the Cav1.3-/- mouse model. For the analysis of finer structures of the cochlea, however, further methods must be used.


Asunto(s)
Células Ciliadas Auditivas Internas , Tomografía Óptica , Animales , Cóclea , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/ultraestructura , Ratones , Sinapsis , Tomografía Óptica/métodos
4.
Front Cardiovasc Med ; 10: 1134503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593151

RESUMEN

Background: Acute myocardial infarction (AMI) is the major cause of cardiovascular mortality worldwide. Most ischemic episodes are triggered by an increase in heart rate, which induces an imbalance between myocardial oxygen delivery and consumption. Developing drugs that selectively reduce heart rate by inhibiting ion channels involved in heart rate control could provide more clinical benefits. The Cav1.3-mediated L-type Ca2+ current (ICav1.3) play important roles in the generation of heart rate. Therefore, they can constitute relevant targets for selective control of heart rate and cardioprotection during AMI. Objective: We aimed to investigate the relationship between heart rate and infarct size using mouse strains knockout for Cav1.3 (Cav1.3-/-) L-type calcium channel and of the cardiac G protein gated potassium channel (Girk4-/-) in association with the funny (f)-channel inhibitor ivabradine. Methods: Wild-type (WT), Cav1.3+/-, Cav1.3-/- and Girk4-/- mice were used as models of respectively normal heart rate, moderate heart rate reduction, bradycardia, and mild tachycardia, respectively. Mice underwent a surgical protocol of myocardial IR (40 min ischemia and 60 min reperfusion). Heart rate was recorded by one-lead surface ECG recording, and infarct size measured by triphenyl tetrazolium chloride staining. In addition, Cav1.3-/- and WT hearts perfused on a Langendorff system were subjected to the same ischemia-reperfusion protocol ex vivo, without or with atrial pacing, and the coronary flow was recorded. Results: Cav1.3-/- mice presented reduced infarct size (-29%), while Girk4-/- displayed increased infarct size (+30%) compared to WT mice. Consistently, heart rate reduction in Cav1.3+/- or by the f-channel blocker ivabradine was associated with significant decrease in infarct size (-27% and -32%, respectively) in comparison to WT mice. Conclusion: Our results show that decreasing heart rate allows to protect the myocardium against IR injury in vivo and reveal a close relationship between basal heart rate and IR injury. In addition, this study suggests that targeting Cav1.3 channels could constitute a relevant target for reducing infarct size, since maximal heart rate dependent cardioprotective effect is already observed in Cav1.3+/- mice.

5.
Front Mol Neurosci ; 12: 55, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967759

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra pars compacta. The causes of PD in humans are still unknown, although metabolic characteristics of the neurons affected by the disease have been implicated in their selective susceptibility. Mitochondrial dysfunction and proteostatic stress are recognized to be important in the pathogenesis of both familial and sporadic PD, and they both culminate in bioenergetic deficits. Exposure to calcium overload has recently emerged as a key determinant, and pharmacological treatment that inhibits Ca2+ entry diminishes neuronal damage in chemical models of PD. In this review, we first introduce general concepts on neuronal Ca2+ signaling and then summarize the current knowledge on fundamental properties of substantia nigra pars compacta dopaminergic neurons, on the role of the interplay between Ca2+ and dopamine signaling in neuronal activity and susceptibility to cell death. We also discuss the possible involvement of a "neglected" player, the Neuronal Calcium Sensor-1 (NCS-1), which has been shown to participate to dopaminergic signaling by regulating dopamine dependent receptor desensitization in normal brain but, data supporting a direct role in PD pathogenesis are still missing. However, it is intriguing to speculate that the Ca2+-dependent modulation of NCS-1 activity could eventually counteract dopaminergic neurons degeneration.

6.
FEBS Lett ; 592(16): 2786-2797, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30058071

RESUMEN

Shank proteins are abundant scaffold proteins in the postsynaptic density (PSD) region of brain synapses. Mutations in Shank proteins are associated with autism, schizophrenia, and Alzheimer's disease. To gain insights into Shank protein interactions at the PSD, we determined the solution structures of the src homology 3 (SH3) domains of all three mammalian Shank proteins. Our findings indicate that they have identical and typical SH3 folding motifs, but unusual target-binding pockets. An investigation into the interaction between the Shank SH3 domains and the proline-rich region of the Cav1.3 calcium channel revealed an atypical interaction in which the highly acidic specificity binding pocket of the SH3 domains binds to a Cav1.3 region containing a cluster of three Arg residues. Our study provides insights into Shank SH3-mediated interactions.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteínas del Tejido Nervioso/química , Sitios de Unión , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Soluciones , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA