Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.101
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 99(4): 2115-2140, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31507244

RESUMEN

Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.


Asunto(s)
Conducta Adictiva , Encéfalo/fisiopatología , Consumidores de Drogas/psicología , Recompensa , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/psicología , Animales , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Plasticidad Neuronal , Factores de Riesgo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/rehabilitación
2.
Annu Rev Med ; 75: 353-367, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37582489

RESUMEN

Cannabis, the most commonly used recreational drug, is illicit in many areas of the world. With increasing decriminalization and legalization, cannabis use is increasing in the United States and other countries. The adverse effects of cannabis are unclear because its status as a Schedule 1 drug in the United States restricts research. Despite a paucity of data, cannabis is commonly perceived as a benign or even beneficial drug. However, recent studies show that cannabis has adverse cardiovascular and pulmonary effects and is linked with malignancy. Moreover, case reports have shown an association between cannabis use and neuropsychiatric disorders. With growing availability, cannabis misuse by minors has led to increasing incidences of overdose and toxicity. Though difficult to detect, cannabis intoxication may be linked to impaired driving and motor vehicle accidents. Overall, cannabis use is on the rise, and adverse effects are becoming apparent in clinical data sets.


Asunto(s)
Cannabis , Sobredosis de Droga , Humanos , Cannabis/efectos adversos
3.
Proc Natl Acad Sci U S A ; 120(34): e2300585120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590414

RESUMEN

Interneuron populations within the nucleus accumbens (NAc) orchestrate excitatory-inhibitory balance, undergo experience-dependent plasticity, and gate-motivated behavior, all biobehavioral processes heavily modulated by endogenous cannabinoid (eCB) signaling. While eCBs are well known to regulate synaptic plasticity onto NAc medium spiny neurons and modulate NAc function at the behavioral level, how eCBs regulate NAc interneuron function is less well understood. Here, we show that eCB signaling differentially regulates glutamatergic and feedforward GABAergic transmission onto NAc somatostatin-expressing interneurons (NAcSOM+) in an input-specific manner, while simultaneously increasing postsynaptic excitability of NAcSOM+ neurons, ultimately biasing toward vHPC (ventral hippocampal), and away from BLA (basolateral amygdalalar), activation of NAcSOM+ neurons. We further demonstrate that NAcSOM+ are activated by stress in vivo and undergo stress-dependent plasticity, evident as a global increase in intrinsic excitability and an increase in excitation-inhibition balance specifically at vHPC, but not BLA, inputs onto NAcSOM+ neurons. Importantly, both forms of stress-induced plasticity are dependent on eCB signaling at cannabinoid type 1 receptors. These findings reveal eCB-dependent mechanisms that sculpt afferent input and excitability of NAcSOM+ neurons and demonstrate a key role for eCB signaling in stress-induced plasticity of NAcSOM+-associated circuits.


Asunto(s)
Cannabinoides , Endocannabinoides , Núcleo Accumbens , Neuronas , Somatostatina
4.
J Neurosci ; 44(41)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39214708

RESUMEN

During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to Δ-9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization.


Asunto(s)
Benzoxazinas , Dronabinol , Naftalenos , Masculino , Animales , Adolescente , Ratones , Humanos , Dronabinol/farmacología , Naftalenos/farmacología , Benzoxazinas/farmacología , Morfolinas/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Ratones Endogámicos C57BL , Dendritas/efectos de los fármacos , Grosor de la Corteza Cerebral , Imagen por Resonancia Magnética , Cannabis , Espinas Dendríticas/efectos de los fármacos
5.
Plant J ; 118(6): 2020-2036, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38525679

RESUMEN

Photoperiod insensitivity (auto-flowering) in drug-type Cannabis sativa circumvents the need for short day (SD) flowering requirements making outdoor cultivation in high latitudes possible. However, the benefits of photoperiod insensitivity are counterbalanced by low cannabinoid content and poor flower quality in auto-flowering genotypes. Despite recent studies in cannabis flowering, a mechanistic understanding of photoperiod insensitivity is still lacking. We used a combination of genome-wide association study and genetic fine-mapping to identify the genetic cause of auto-flowering in cannabis. We then used gene expression analyses and transient transformation assays to characterize flowering time control. Herein, we identify a splice site mutation within circadian clock gene PSEUDO-RESPONSE REGULATOR 37 (CsPRR37) in auto-flowering cannabis. We show that CsPRR37 represses FT expression and its circadian oscillations transition to a less repressive state during SD as compared to long days (LD). We identify several key circadian clock genes whose expression is altered in auto-flowering cannabis, particularly under non-inductive LD. Research into the pervasiveness of this mutation and others affecting flowering time will help elucidate cannabis domestication history and advance cannabis breeding toward a more sustainable outdoor cultivation system.


Asunto(s)
Cannabis , Flores , Regulación de la Expresión Génica de las Plantas , Mutación , Fotoperiodo , Cannabis/genética , Cannabis/crecimiento & desarrollo , Cannabis/fisiología , Relojes Circadianos , Ritmo Circadiano , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Empalme de ARN
6.
Plant J ; 118(4): 1155-1173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332528

RESUMEN

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Asunto(s)
Acetatos , Cannabis , Ciclopentanos , Aprendizaje Profundo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Tricomas , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Cannabis/genética , Cannabis/crecimiento & desarrollo , Cannabis/metabolismo , Acetatos/farmacología , Tricomas/genética , Tricomas/metabolismo , Tricomas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Reguladores del Crecimiento de las Plantas/metabolismo
7.
Plant J ; 119(1): 383-403, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38625758

RESUMEN

Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.


Asunto(s)
Cannabis , Flores , Fotoperiodo , Proteínas de Plantas , Flores/genética , Flores/fisiología , Cannabis/genética , Cannabis/fisiología , Cannabis/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mapeo Cromosómico
8.
Eur Heart J ; 45(6): 475-484, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38200679

RESUMEN

BACKGROUND AND AIMS: A rising number of countries allow physicians to treat chronic pain with medical cannabis. However, recreational cannabis use has been linked with cardiovascular side effects, necessitating investigations concerning the safety of prescribed medical cannabis. METHODS: Using nationwide Danish registers, patients with chronic pain initiating first-time treatment with medical cannabis during 2018-21 were identified and matched 1:5 to corresponding control patients on age, sex, chronic pain diagnosis, and concomitant use of other pain medication. The absolute risks of first-time arrhythmia (atrial fibrillation/flutter, conduction disorders, paroxysmal tachycardias, and ventricular arrhythmias) and acute coronary syndrome were reported comparing medical cannabis use with no use. RESULTS: Among 1.88 million patients with chronic pain (46% musculoskeletal, 11% cancer, 13% neurological, and 30% unspecified pain), 5391 patients claimed a prescription of medical cannabis [63.2% women, median age: 59 (inter-quartile range 48-70) years] and were compared with 26 941 control patients of equal sex- and age composition. Arrhythmia was observed in 42 and 107 individuals, respectively, within 180 days. Medical cannabis use was associated with an elevated risk of new-onset arrhythmia {180-day absolute risk: 0.8% [95% confidence interval (CI) 0.6%-1.1%]} compared with no use [180-day absolute risk: 0.4% (95% CI 0.3%-0.5%)]: a risk ratio of 2.07 (95% CI 1.34-2.80) and a 1-year risk ratio of 1.36 (95% CI 1.00-1.73). No significant association was found for acute coronary syndrome [180-day risk ratio: 1.20 (95% CI 0.35-2.04)]. CONCLUSIONS: In patients with chronic pain, the use of prescribed medical cannabis was associated with an elevated risk of new-onset arrhythmia compared with no use-most pronounced in the 180 days following the initiation of treatment.


Asunto(s)
Síndrome Coronario Agudo , Fibrilación Atrial , Cannabis , Dolor Crónico , Marihuana Medicinal , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Cannabis/efectos adversos , Marihuana Medicinal/efectos adversos , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/epidemiología , Síndrome Coronario Agudo/tratamiento farmacológico , Fibrilación Atrial/tratamiento farmacológico , Dinamarca/epidemiología
9.
J Infect Dis ; 229(5): 1306-1316, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38243412

RESUMEN

BACKGROUND: Human immunodeficiency virus 1 (HIV-1) tissue reservoirs remain the main obstacle against an HIV cure. Limited information exists regarding cannabis's effects on HIV-1 infections in vivo, and the impact of cannabis use on HIV-1 parenchymal tissue reservoirs is unexplored. METHODS: To investigate whether cannabis use alters HIV-1 tissue reservoirs, we systematically collected 21 postmortem brain and peripheral tissues from 20 men with subtype C HIV-1 and with suppressed viral load enrolled in Zambia, 10 of whom tested positive for cannabis use. The tissue distribution and copies of subtype C HIV-1 LTR, gag, env DNA and RNA, and the relative mRNA levels of cytokines IL-1ß, IL-6, IL-10, and TGF-ß1 were quantified using PCR-based approaches. Utilizing generalized linear mixed models we compared persons with HIV-1 and suppressed viral load, with and without cannabis use. RESULTS: The odds of tissues harboring HIV-1 DNA and the viral DNA copies in those tissues were significantly lower in persons using cannabis. Moreover, the transcription levels of proinflammatory cytokines IL-1ß and IL-6 in lymphoid tissues of persons using cannabis were also significantly lower. CONCLUSIONS: Our findings suggested that cannabis use is associated with reduced sizes and inflammatory cytokine expression of subtype C HIV-1 reservoirs in men with suppressed viral load.


Asunto(s)
Citocinas , Infecciones por VIH , VIH-1 , Carga Viral , Humanos , Masculino , VIH-1/genética , VIH-1/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Adulto , Citocinas/metabolismo , Citocinas/genética , Provirus/genética , Persona de Mediana Edad , Zambia , ADN Viral , Antirretrovirales/uso terapéutico , Encéfalo/virología , Encéfalo/metabolismo , Adulto Joven , Uso de la Marihuana/metabolismo
10.
J Cell Mol Med ; 28(17): e70030, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267200

RESUMEN

The aim of this study was to determine the antiviral activity of cannabidiol (CBD) against SARS-CoV-2 infection. CBD is the second most studied cannabinoid obtained from Cannabis plants. We investigated the potential use of CBD, which has so far proven to have a positive effect on different diseases, in the SARS-CoV-2 infection. To test this, in vivo studies were carried out using K18-hACE2 transgenic mice. To reveal the potential therapeutic effect of the CBD at the histopathological and molecular level challenge experiments were performed. The study was designed with two groups (n = 10) and in the treatment group animals were infected with SARS-CoV-2 virus strain B.1.1.7 alpha before the administration of CBD. While the disease progressed and resulted in death in the control group that was infected by the virus alone, it was observed that the infection slowed down and the survival rate increased in the mice treated with CBD along with the virus. In this study, K18-hACE2 transgenic mice infected with the wild SARS-CoV-2 virus were used to investigate and prove the antiviral activity of CBD.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Cannabidiol , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , COVID-19/virología , COVID-19/patología , Modelos Animales de Enfermedad , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones Transgénicos , SARS-CoV-2/efectos de los fármacos , Carga Viral/efectos de los fármacos
11.
Plant J ; 113(3): 437-445, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458321

RESUMEN

Hemp (Cannabis sativa) is a highly versatile crop with a multitude of applications, from textiles, biofuel and building material to high-value food products for consumer markets. Furthermore, non-hallucinogenic cannabinoids like cannabidiol (CBD), which can be extracted from female hemp flowers, are potentially valuable pharmacological compounds. In addition, hemp has high carbon sequestration potential associated with its rapid growth rate. Therefore, the hemp industry is gaining more traction and breeding hemp cultivars adapted to local climate conditions or bred for specific applications is becoming increasingly important. Here, we present a method for the rapid generation cycling (speed breeding) of hemp. The speed breeding protocol makes use of the photoperiod sensitivity of Cannabis. It encompasses vegetative growth of the plants for 2 weeks under continuous light, followed by 4 weeks under short-day conditions, during which flower induction, pollination and seed development proceed, and finally a seed ripening phase under continuous light and water stress. With the protocol described here, a generation time of under 9 weeks (61 days) from seed to seed can be achieved. Furthermore, our method synchronises the flowering time of different hemp cultivars, thus facilitating crosses between cultivars. The extremely short generation time will enable hemp researchers and breeders to perform crosses in a time-efficient way and generate new hemp cultivars with defined genetic characteristics over a short period of time.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Cannabis/genética , Fitomejoramiento , Flores/genética
12.
Mol Plant Microbe Interact ; 37(1): 51-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750850

RESUMEN

Powdery mildew (PM) in Cannabis sativa is most frequently caused by the biotrophic fungus Golovinomyces ambrosiae. Based on previously characterized variation in susceptibility to PM, biparental populations were developed by crossing the most resistant cultivar evaluated, 'FL 58', with a susceptible cultivar, 'TJ's CBD'. F1 progeny were evaluated and displayed a range of susceptibility, and two were self-pollinated to generate two F2 populations. In 2021, the F2 populations (n = 706) were inoculated with PM and surveyed for disease severity. In both F2 populations, 25% of the progeny were resistant, while the remaining 75% showed a range of susceptibility. The F2 populations, as well as selected F1 progeny and the parents, were genotyped with a single-nucleotide polymorphism array, and a consensus genetic map was produced. A major effect quantitative trait locus on C. sativa chromosome 1 (Chr01) and other smaller-effect quantitative trait loci (QTL) on four other chromosomes were identified. The most associated marker on Chr01 was located near CsMLO1, a candidate susceptibility gene. Genomic DNA and cDNA sequencing of CsMLO1 revealed a 6.8-kb insertion in FL 58, relative to TJ's CBD, of which 846 bp are typically spliced into the mRNA transcript encoding a premature stop codon. Molecular marker assays were developed using CsMLO1 sequences to distinguish PM-resistant and PM-susceptible genotypes. These data support the hypothesis that a mutated MLO susceptibility gene confers resistance to PM in C. sativa and provides new genetic resources to develop resistant cultivars. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Cannabis , Cannabis/genética , Resistencia a la Enfermedad/genética , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Genotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
J Cell Physiol ; : e31373, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988064

RESUMEN

Cannabis, often recognized as the most widely used illegal psychoactive substance globally, has seen a shift in its legal status in several countries and regions for both recreational and medicinal uses. This change has brought to light new evidence linking cannabis consumption to various vascular conditions. Specifically, there is an association between cannabis use and atherosclerosis, along with conditions such as arteritis, reversible vasospasm, and incidents of aortic aneurysm or dissection. Recent research has started to reveal the mechanisms connecting cannabinoid compounds to atherosclerosis development. It is well known that the primary biological roles of cannabinoids operate through the activation of cannabinoid receptor types 1 and 2. Manipulation of the endocannabinoid system, either genetically or pharmacologically, is emerging as a promising approach to address metabolic dysfunctions related to obesity. Additionally, numerous studies have demonstrated the vasorelaxant properties and potential atheroprotective benefits of cannabinoids. In preclinical trials, cannabidiol is being explored as a treatment option for monocrotaline-induced pulmonary arterial hypertension. Although existing literature suggests a direct role of cannabinoids in the pathogenesis of atherosclerosis, the correlation between cannabinoids and other vascular diseases was only reported in some case series or observational studies, and its role and precise mechanisms remain unclear. Therefore, it is necessary to summarize and update previously published studies. This review article aims to summarize the latest clinical and experimental research findings on the relationship between cannabis use and vascular diseases. It also seeks to shed light on the potential mechanisms underlying these associations, offering a comprehensive view of current knowledge in this evolving field of study.

14.
BMC Genomics ; 25(1): 818, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210290

RESUMEN

BACKGROUND: Cannabis sativa is seeing a global resurgence as a food, fiber and medicinal crop for industrial hemp and medicinal Cannabis industries respectively. However, a widespread moratorium on the use and research of C. sativa throughout most of the 20th century has seen the development of improved cultivars for specific end uses lag behind that of conventional crops. While C. sativa research and development has seen significant investments in the recent past, resulting in a suite of publicly available genomic resources and tools, a versatile and cost-effective mid-density genotyping platform for applied purposes in breeding and pre-breeding is lacking. Here we report on a first mid-density fixed-target SNP platform for C. sativa. RESULTS: The High-throughput Amplicon-based SNP-platform for medicinal Cannabis and industrial Hemp (HASCH) was designed using a combination of filtering and Integer Linear Programming on publicly available whole-genome sequencing and RNA sequencing data, supplemented with in-house generated genotyping-by-sequencing (GBS) data. HASCH contains 1,504 genome-wide targets of high call rate (97% mean) and even distribution across the genome, designed to be highly informative (> 0.3 minor allele frequency) across both medicinal cannabis and industrial hemp gene pools. Average numbers of mismatch SNP between any two accessions were 251 for medicinal cannabis (N = 116) and 272 for industrial hemp (N = 87). Comparing HASCH data with corresponding GBS data on a collection of diverse C. sativa accessions demonstrated high concordance and resulted in comparable phylogenies and genetic distance matrices. Using HASCH on a segregating F2 population derived from a cross between a tetrahydrocannabinol (THC)-dominant and a cannabidiol (CBD)-dominant accession resulted in a genetic map consisting of 310 markers, comprising 10 linkage groups and a total size of 582.7 cM. Quantitative Trait Locus (QTL) mapping identified a major QTL for CBD content on chromosome 7, consistent with previous findings. CONCLUSION: HASCH constitutes a versatile, easy to use and cost-effective genotyping solution for the rapidly growing Cannabis research community. It provides consistent genetic fingerprints of 1504 SNPs with wide applicability genetic resource management, quantitative genetics and breeding.


Asunto(s)
Cannabis , Técnicas de Genotipaje , Marihuana Medicinal , Polimorfismo de Nucleótido Simple , Cannabis/genética , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma de Planta , Genotipo
15.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632206

RESUMEN

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Asunto(s)
Cannabinoides , Cannabis , ARN sin Sentido/análisis , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Cannabis/genética , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Genoma de Planta
16.
Am J Physiol Renal Physiol ; 326(6): F917-F930, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634131

RESUMEN

Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.


Asunto(s)
Acuaporina 2 , Benzoxazinas , Diuresis , Túbulos Renales Colectores , Morfolinas , Naftalenos , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Diuresis/efectos de los fármacos , Benzoxazinas/farmacología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Acuaporina 2/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Masculino , Diabetes Insípida Neurogénica/metabolismo , Diabetes Insípida Neurogénica/fisiopatología , Ratones Endogámicos C57BL , Agonistas de Receptores de Cannabinoides/farmacología , Ratones , Modelos Animales de Enfermedad
17.
Neurobiol Dis ; 199: 106588, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960101

RESUMEN

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.


Asunto(s)
Conducta Animal , Cannabidiol , Dronabinol , Hipocampo , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Modelos Animales , Animales , Ratas , Dronabinol/toxicidad , Cannabidiol/toxicidad , Factores Sexuales , Corteza Prefrontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Femenino , Embarazo , Conducta Animal/efectos de los fármacos , Ratas Wistar , Memoria/efectos de los fármacos , Ansiedad/inducido químicamente , Cognición/efectos de los fármacos , Conducta Impulsiva/efectos de los fármacos , Psicotrópicos/toxicidad
18.
Int J Cancer ; 155(6): 1078-1090, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747216

RESUMEN

Pain is a prevalent symptom among cancer patients and survivors. Psychoactive substance use (PSU) is associated with both the presence and severity of pain. However, little is known about this association in the context of cancer. The primary objective was to compare the prevalence of PSU and its relationship with pain during and after cancer. PSU was defined as the use of nonmedication substances (alcohol, tobacco, e-cigarettes, cannabidiol, and cannabis), with frequency categorized as at least yearly, monthly, weekly, or daily. Secondary objectives aimed to explore the relationships between PSU and pain characteristics, health-related quality of life, anxiety, depression, deprivation, and individual characteristics. Among the 1041 individuals included, pain prevalence was 44.7% (95% confidence interval [CI] 41.6%-47.8%). The overall prevalence of PSU at least monthly was 67.0% (95% CI 64.0%-69.8%). The proportions of chronic and neuropathic pains were higher for at least monthly use of cannabidiol compared to nonuse (70.0% vs. 39.3% and 55.7% vs. 28.1%, p < .001). In multivariate analysis, the monthly uses of tobacco and cannabidiol were higher in painful individuals than in nonpainful ones (odds ratio: 2.85 [95% CI 1.22-6.64] and 3.76 [95% CI 1.13-12.44], p < .05). From the point of view of the patient care, the study underscores the need for physicians to prioritize smoking cessation and pay attention to the use of cannabidiol during and after cancer.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Humanos , Masculino , Femenino , Supervivientes de Cáncer/estadística & datos numéricos , Estudios Transversales , Persona de Mediana Edad , Neoplasias/epidemiología , Neoplasias/complicaciones , Francia/epidemiología , Anciano , Adulto , Prevalencia , Calidad de Vida , Psicotrópicos/efectos adversos , Dolor en Cáncer/epidemiología , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/etiología , Trastornos Relacionados con Sustancias/epidemiología , Trastornos Relacionados con Sustancias/complicaciones , Dolor/epidemiología , Dolor/etiología
19.
Cancer Metastasis Rev ; 42(3): 823-845, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36696005

RESUMEN

Tetrahydrocannabinols (THCs) antagonize the CB1 and CB2 cannabinoid receptors, whose signaling to the endocannabinoid system is essential for controlling cell survival and proliferation as well as psychoactive effects. Most tumor cells express a much higher level of CB1 and CB2; THCs have been investigated as potential cancer therapeutic due to their cannabimimetic properties. To date, THCs have been prescribed as palliative medicine to cancer patients but not as an anticancer modality. Growing evidence of preclinical research demonstrates that THCs reduce tumor progression by stimulating apoptosis and autophagy and inhibiting two significant hallmarks of cancer pathogenesis: metastasis and angiogenesis. However, the degree of their anticancer effects depends on the origin of the tumor site, the expression of cannabinoid receptors on tumor cells, and the dosages and types of THC. This review summarizes the current state of knowledge on the molecular processes that THCs target for their anticancer effects. It also emphasizes the substantial knowledge gaps that should be of concern in future studies. We also discuss the therapeutic effects of THCs and the problems that will need to be addressed in the future. Clarifying unanswered queries is a prerequisite to translating the THCs into an effective anticancer regime.


Asunto(s)
Cannabinoides , Neoplasias , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Receptores de Cannabinoides , Endocannabinoides , Neoplasias/tratamiento farmacológico
20.
Curr Issues Mol Biol ; 46(4): 3122-3133, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38666926

RESUMEN

Worldwide, approximately 15 million people per year suffer from stroke. With about 5 million deaths, stroke is the second most common cause of death and a major cause of long-term disability. It is estimated that about 25% of people older than 85 years will develop stroke. Cannabis sativa and derived cannabinoids have been used for recreational and medical purposes for many centuries. However, due to the legal status in the past, research faced restrictions, and cannabis use was stigmatized for potential negative impacts on health. With the changes in legal status in many countries of the world, cannabis and cannabis-derived substances such as cannabinoids and terpenes have gained more interest in medical research. Several medical effects of cannabis have been scientifically proven, and potential risks identified. In the context of stroke, the role of cannabis is controversial. The negative impact of cannabis use on stroke has been reported through case reports and population-based studies. However, potential beneficial effects of specific cannabinoids are described in animal studies under certain conditions. In this narrative review, the existing body of evidence regarding the negative and positive impacts of cannabis use prior to stroke will be critically appraised.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA