Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2310157121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102539

RESUMEN

The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation. Our analysis revealed that disturbances directly attributed to human activity impacted 4.2% of the survey area while windthrows and other disturbances affected 2.7% and 14.7%, respectively. Extrapolating the lidar-based statistics to the study area (544,300 km2), we found that 24.1, 24.2, and 14.5 Tg C y-1 were lost through clearing, fires, and logging, respectively. The losses due to large windthrows (21.5 Tg C y-1) and other disturbances (50.3 Tg C y-1) were partially counterbalanced by forest growth (44.1 Tg C y-1). Our high-resolution estimates demonstrated a greater loss of carbon through forest degradation than through deforestation and a net loss of carbon of 90.5 ± 16.6 Tg C y-1 for the study region attributable to both anthropogenic and natural processes. This study highlights the role of forest degradation in the carbon balance for this critical region in the Earth system.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Bosques , Brasil/epidemiología , Carbono/metabolismo , Humanos , Árboles/crecimiento & desarrollo , Ciclo del Carbono
2.
Glob Chang Biol ; 30(1): e17101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273560

RESUMEN

Soil organic carbon (SOC) plays an essential role in mediating community structure and metabolic activities of belowground biota. Unraveling the evolution of belowground communities and their feedback mechanisms on SOC dynamics helps embed the ecology of soil microbiome into carbon cycling, which serves to improve biodiversity conservation and carbon management strategy under global change. Here, croplands with a SOC gradient were used to understand how belowground metabolisms and SOC decomposition were linked to the diversity, composition, and co-occurrence networks of belowground communities encompassing archaea, bacteria, fungi, protists, and invertebrates. As SOC decreased, the diversity of prokaryotes and eukaryotes also decreased, but their network complexity showed contrasting patterns: prokaryotes increased due to intensified niche overlap, while that of eukaryotes decreased possibly because of greater dispersal limitation owing to the breakdown of macroaggregates. Despite the decrease in biodiversity and SOC stocks, the belowground metabolic capacity was enhanced as indicated by increased enzyme activity and decreased enzymatic stoichiometric imbalance. This could, in turn, expedite carbon loss through respiration, particularly in the slow-cycling pool. The enhanced belowground metabolic capacity was dominantly driven by greater multitrophic network complexity and particularly negative (competitive and predator-prey) associations, which fostered the stability of the belowground metacommunity. Interestingly, soil abiotic conditions including pH, aeration, and nutrient stocks, exhibited a less significant role. Overall, this study reveals a greater need for soil C resources across multitrophic levels to maintain metabolic functionality as declining SOC results in biodiversity loss. Our researchers highlight the importance of integrating belowground biological processes into models of SOC turnover, to improve agroecosystem functioning and carbon management in face of intensifying anthropogenic land-use and climate change.


Asunto(s)
Carbono , Suelo , Suelo/química , Biodiversidad , Bacterias , Archaea
3.
Glob Chang Biol ; 30(9): e17509, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39323398

RESUMEN

Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data. Here, we use eddy covariance to quantify the net ecosystem exchange (NEE) and its components-gross primary production (GPP) and ecosystem respiration (Reco) for years 2010-2022 for a Sahelian semiarid savanna to study trends in the fluxes. Significant negative trends were found for NEE (12.7 ± 2.8 g C m2 year-1), GPP (39.6 ± 7.9 g C m2 year-1), and Reco (32.2 ± 8.9 g C m2 year-1). We found that NEE decreased by 60% over the study period, and this decrease was mainly caused by stronger negative trends in rainy season GPP than in Reco. Additionally, we observed strong increasing trends in vapor pressure deficit, but no trends in rainfall or soil water content. Thus, a proposed explanation for the decrease in carbon sink strength is increasing atmospheric dryness. The warming climate in the Sahel, coupled with increasing evaporative demand, may thus lead to decreased GPP levels across this biome, and lowering its CO2 sequestration.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Pradera , Estaciones del Año , Ciclo del Carbono , Suelo/química , Lluvia
4.
Metab Eng ; 78: 128-136, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286072

RESUMEN

L-leucine is an essential amino acid widely used in food and pharmaceutical industries. However, the relatively low production efficiency limits its large-scale application. In this study, we rationally developed an efficient L-leucine-producing Escherichia coli strain. Initially, the L-leucine synthesis pathway was enhanced by overexpressing feedback-resistant 2-isopropylmalate synthase and acetohydroxy acid synthase both derived from Corynebacterium glutamicum, along with two other native enzymes. Next, the pyruvate and acetyl-CoA pools were enriched by deleting competitive pathways, employing the nonoxidative glycolysis pathway, and dynamically modulating the citrate synthase activity, which significantly promoted the L-leucine production and yield to 40.69 g/L and 0.30 g/g glucose, respectively. Then, the redox flux was improved by substituting the native NADPH-dependent acetohydroxy acid isomeroreductase, branched chain amino acid transaminase, and glutamate dehydrogenase with their NADH-dependent equivalents. Finally, L-leucine efflux was accelerated by precise overexpression of the exporter and deletion of the transporter. Under fed-batch conditions, the final strain LXH-21 produced 63.29 g/L of L-leucine, with a yield and productivity of 0.37 g/g glucose and 2.64 g/(L h), respectively. To our knowledge, this study achieved the highest production efficiency of L-leucine to date. The strategies presented here will be useful for engineering E. coli strains for producing L-leucine and related products on an industrial scale.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina/genética , Leucina/metabolismo , Vías Biosintéticas , Glucosa/genética , Glucosa/metabolismo , Corynebacterium glutamicum/metabolismo
5.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36353841

RESUMEN

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Asunto(s)
Secuestro de Carbono , Ecosistema , Suelo , Dióxido de Carbono/análisis , Tundra , Regiones Árticas , Ciclo del Carbono , Plantas , Carbono/análisis
6.
Glob Chang Biol ; 29(18): 5429-5444, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37317051

RESUMEN

Global climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere-climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2 ), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2 . Collectively, we demonstrate that long-term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere-climate feedback in Mediterranean-type water-limited ecosystems, namely how eP induces soil C loss via microbe-plant-soil interplay.


Asunto(s)
Pradera , Microbiota , Carbono , Cambio Climático , Nitrógeno
7.
J Environ Manage ; 347: 119188, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801948

RESUMEN

The humic acid (HA) possesses a more recalcitrant structure, making it crucial carbon components that improve carbon sequestration. Moreover, ferrous ions could improve microbial activity and enhance compost humification, and their oxidation into iron oxides could adsorb carbon components for sequestration. Based on the advantages of low cost and easy availability of ferrous sulfate (FeSO4), this study investigated the effect of FeSO4 on carbon sequestration during composting. Chicken manure (CM) and food waste (FW) composting were carried out in four treatments, namely control (CM, FW) and 5% (w/w) FeSO4 treated groups (CM+, FW+). Results indicated that FeSO4 increased HA content, improved organic carbon stability. Carbon loss for CM, CM+, FW and FW + treatments were 48.5%, 46.2%, 45.0%, and 40.3%, respectively. Meanwhile, FeSO4 enhanced the function of bacterial taxa involved in HA synthesis in CM + treatment, and improved the number of core bacteria significantly associated with formation of HA and iron oxide. SEM analysis verified that role of FeSO4 was significant in promoting HA synthesis during CM + composting, while it was remarkably in enhancing HA sequestration during FW + composting. This article provided fundamental theoretical backing for enhancing HA production and improving carbon sequestration during different materials composting.


Asunto(s)
Compostaje , Eliminación de Residuos , Animales , Suelo , Secuestro de Carbono , Alimentos , Sustancias Húmicas , Carbono , Hierro , Estiércol , Pollos , Iones
8.
Glob Chang Biol ; 27(1): 202-214, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32920909

RESUMEN

Global vegetated coastal habitats (VCHs) represent a large sink for organic carbon (OC) stored within their soils. The regional patterns and causes of spatial variation, however, remain uncertain. The sparsity and regional bias of studies on soil OC stocks from Chinese VCHs have limited the reliable estimation of their capacity as regional and global OC sinks. Here, we use field and published data from 262 sampled soil cores and 181 surface soils to report estimates of soil OC stocks, burial rates and losses of VCHs in China. We find that Chinese mangrove, salt marsh and seagrass habitats have relatively low OC stocks, storing 6.3 ± 0.6, 7.5 ± 0.6, and 1.6 ± 0.6 Tg C (±95% confidence interval) in the top meter of the soil profile with burial rates of 44 ± 17, 159 ± 57, and 6 ± 45 Gg C/year, respectively. The variability in the soil OC stocks is linked to biogeographic factors but is mostly impacted by sedimentary processes and anthropic activities. All habitats have experienced significant losses, resulting in estimated emissions of 94.2-395.4 Tg CO2 e (carbon dioxide equivalent) over the past 70 years. Reversing this trend through conservation and restoration measures has, therefore, great potential in contributing to the mitigation of climate change while providing additional benefits. This assessment, on a national scale from highly sedimentary environments under intensive anthropogenic pressures, provides important insights into blue carbon sink mechanism and sequestration capacities, thus contributing to the synchronous progression of global blue carbon management.


Asunto(s)
Carbono , Suelo , Secuestro de Carbono , China , Ecosistema
9.
Glob Chang Biol ; 26(11): 6555-6567, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32780521

RESUMEN

Carbon (C)-rich wetland soils are often drained for agriculture due to their capacity to support high net primary productivity. Increased drainage is expected this century to meet the agricultural demands of a growing population. Wetland drainage can result in large soil C losses and the concentration of residual soil minerals such as iron (Fe) and aluminum (Al). In upland soils, reactive Fe and Al minerals can contribute to soil C accumulation through sorption to poorly crystalline minerals and coprecipitation of organo-metal complexes, as well as C loss via anaerobic respiration by Fe-reducing bacteria. The role of these minerals in soil C dynamics is often overlooked in managed wetland soils and may be particularly important in both drained and reflooded systems with elevated mineral concentrations. Reflooding drained soils have been proposed as a means to sequester C for climate change mitigation, yet little is known about how reactive Fe and Al minerals affect C cycling in restored wetlands. We explored the interactions among soil C and reactive Fe and Al minerals in drained and reflooded wetland soils. In reflooded soils, soil C was negatively associated with reactive Fe and reduced Fe(II), a proxy for anaerobic conditions (reactive Fe: R2  = .54-.79; Fe(II): R2  = .59-.89). In drained soils, organo-Al complexes were positively associated with soil C and Fe(II) (Al R2  = .91; Fe(II): R2  = .54-.60). Soil moisture, organo-Al, and reactive Fe explained most of the variation observed in soil C concentrations across all sites (p < .01). Reactive Fe was negatively correlated to soil C concentrations across sites, suggesting these Fe pools may drive additional C losses in drained soils and limit C sequestration with reflooding. In contrast, reactive organo-Al in drained soils facilitates C storage via aggregation and/or formation of anaerobic (micro)sites that protect residual soil C from oxidation and may at least partially offset C losses.


Asunto(s)
Suelo , Humedales , Agricultura , Carbono , Minerales
10.
Biotechnol Bioeng ; 117(6): 1673-1683, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32086810

RESUMEN

In this study, a non-sterile (open) continuous fermentation (OCF) process with no-carbon loss was developed to improve lactic acid (LA) productivity and operational stability from the co-utilization of lignocellulose-derived sugars by thermophilic Enterococcus faecium QU 50. The effects of different sugar mixtures on LA production were firstly investigated in conventional OCF at 50°C, pH 6.5 and a dilution rate of 0.20 hr-1 . The xylose consumption ratio was greatly lower than that of glucose in fermentations with glucose/xylose mixtures, indicating apparent carbon catabolite repression (CCR). However, CCR could be efficiently eliminated by feeding solutions containing the cellobiose/xylose mixture. In OCF at a dilution rate ca. 0.10 hr-1 , strain QU 50 produced 42.6 g L-1 of l-LA with a yield of 0.912 g g-1 -consumed sugars, LA yield of 0.655 g g-1 based on mixed sugar-loaded, and a productivity of 4.31 g L-1 hr-1 from simulated energy cane hydrolyzate. In OCF with high cell density by cell recycling, simultaneous and complete co-utilization of sugars was achieved with stable LA production at 60.1 ± 3.25 g L-1 with LA yield of 0.944 g g-1 -consumed sugar and LA productivity of 6.49 ± 0.357 g L-1 hr-1 . Besides this, a dramatic increase in LA yield of 0.927 g g-1 based on mixed sugar-loaded with prolonged operational stability for at least 500 hr (>20 days) was established. This robust system demonstrates an initial green step with a no-carbon loss under energy-saving toward the feasibility of sustainable LA production from lignocellulosic sugars.


Asunto(s)
Enterococcus faecium/metabolismo , Microbiología Industrial/métodos , Ácido Láctico/metabolismo , Azúcares/metabolismo , Carbono/metabolismo , Represión Catabólica , Fermentación
11.
Glob Chang Biol ; 23(1): 224-234, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27435526

RESUMEN

Despite covering only approximately 138 000 km2 , mangroves are globally important carbon sinks with carbon density values three to four times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1 m of belowground carbon (BGC). Carbon stored at depths beyond 1 m, and the effects of mangrove species, location and environmental context on these stores, are poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (reduced emissions from deforestation and degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5 t C ha-1 . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5 m2 resolution produced an estimate of 69.41 Mt C [±9.15 95% confidence interval (C.I.)] for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (±12.21 95% C.I.), an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country-level mangrove map provides a valuable tool for assessing carbon stocks and visualizing the distribution of BGC. Estimates at the 2.5 m2 resolution provide sufficient details for highlighting and prioritizing areas for mangrove conservation and restoration.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Humedales , Carbono , Kenia
12.
Glob Chang Biol ; 22(4): 1469-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26661597

RESUMEN

Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions.


Asunto(s)
Carbono , Incendios , Modelos Teóricos , Suelo , Indonesia , Clima Tropical
13.
Ann Bot ; 114(5): 981-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25122655

RESUMEN

BACKGROUND AND AIMS: Recent studies have suggested that responses to shading gradients may play an important role in establishment success of exotic plants, but hitherto few studies have tested this. Therefore, a common-garden experiment was conducted using multiple Asian woody plant species that were introduced to Europe >100 years ago in order to test whether naturalized and non-naturalized species differ in their responses to shading. Specifically, a test was carried out to determine whether naturalized exotic woody species maintained better growth under shaded conditions, and whether they expressed greater (morphological and physiological) adaptive plasticity in response to shading, relative to non-naturalized species. METHODS: Nineteen naturalized and 19 non-naturalized exotic woody species were grown under five light levels ranging from 100 to 7 % of ambient light. For all plants, growth performance (i.e. biomass), morphological and CO2 assimilation characteristics were measured. For the CO2 assimilation characteristics, CO2 assimilation rate was measured at 1200 µmol m(-2) s(-1) (i.e. saturated light intensity, A1200), 50 µmol m(-2) s(-1) (i.e. low light intensity, A50) and 0 µmol m(-2) s(-1) (A0, i.e. dark respiration). KEY RESULTS: Overall, the naturalized and non-naturalized species did not differ greatly in biomass production and measured morphological and CO2 assimilation characteristics across the light gradient. However, it was found that naturalized species grew taller and reduced total leaf area more than non-naturalized species in response to shading. It was also found that naturalized species were more capable of maintaining a high CO2 assimilation rate at low light intensity (A50) when grown under shading. CONCLUSIONS: The results indicate that there is no clear evidence that the naturalized species possess a superior response to shading over non-naturalized species, at least not at the early stage of their growth. However, the higher CO2 assimilation capacity of the naturalized species under low-light conditions might facilitate early growth and survival, and thereby ultimately favour their initial population establishment over the non-naturalized species.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Desarrollo de la Planta , Plantas/efectos de la radiación , Biomasa , Respiración de la Célula , Especies Introducidas , Luz , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
14.
Sci Total Environ ; 923: 171418, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460701

RESUMEN

Perturbations in soil microbial communities caused by climate warming are expected to have a strong impact on biodiversity and future climate-carbon (C) feedback, especially in vulnerable habitats that are highly sensitive to environmental change. Here, we investigate the impact of four-year experimental warming on soil microbes and C cycling in the Loess Hilly Region of China. The results showed that warming led to soil C loss, mainly from labile C, and this C loss is associated with microbial response. Warming significantly decreased soil bacterial diversity and altered its community structure, especially increasing the abundance of heat-tolerant microorganisms, but had no effect on fungi. Warming also significantly increased the relative importance of homogeneous selection and decreased "drift" of bacterial and fungal communities. Moreover, warming decreased bacterial network stability but increased fungal network stability. Notably, the magnitude of soil C loss was significantly and positively correlated with differences in bacterial community characteristics under ambient and warming conditions, including diversity, composition, network stability, and community assembly. This result suggests that microbial responses to warming may amplify soil C loss. Combined, these results provide insights into soil microbial responses and C feedback in vulnerable ecosystems under climate warming scenarios.


Asunto(s)
Ecosistema , Microbiota , Pradera , Suelo , Carbono , Cambio Climático , Microbiología del Suelo , Bacterias
15.
Sci Total Environ ; 905: 167241, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37741412

RESUMEN

The role of mangroves in carbon sequestration is critical in mitigating climate change. For better identifying the carbon conservation hotspots of mangroves influenced by environmental factors, the spatial distribution and driving mechanisms of mangrove vegetation and soil carbon sequestration, as well as the future carbon dynamics of mangroves, required clarification. Firstly, we assessed the spatial pattern of vegetation biomass and soil depth-varied soil total organic carbon (TOC) in Xiaoguansha, Guangxi Province of China, and its relationships with duration of inundation (DTI) were explored. Additionally, the carbon storage capacity of adjacent mangrove tidal flats as potential carbon reservoirs was quantified. Thirdly, freshwater, and nutrient inputs, biotic factors of mangrove, and soil composition were selected as impact factors, and their mechanisms in carbon sequestration were elucidated by using Partial least squares path modeling (PLS-PM). Finally, medium values of environmental factors on mangrove carbon sequestration were revealed, based on which future loss and gain patterns of carbon sequestration under the combined effects were fully discussed. The results showed that: (1) The Above-ground biomass (AGB) and TOC densities were 32.89 Mg C/ha and 185.10 Mg C/ha in the study area, and both were enriched in the Interior areas. The carbon sequestration in the tidal flats was equivalented to >1/5 of total carbon sequestration of mangroves. (2) DTI was the most critical factor affecting the carbon sequestration pattern and was found to be positive correlated with AGB and TOC via changing soil contents (SC), whereas it exhibits a negative correlation with AGB and TOC through influencing canopy density (CD). CD and TP were identified as significant predictors. (3) Median analysis indicated that future carbon 'gain' area will move nearshore, whereas the carbon-rich intertidal area may undergo carbon loss. This study provided new insights and scientific understanding for management of mangrove blue carbon function.

16.
Huan Jing Ke Xue ; 44(8): 4554-4564, 2023 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-37694649

RESUMEN

Biochar has high carbon stability and is a good carbon sequestration material. Sludge biochar is rich in inorganic minerals, which would provide enrichment in the preparation process of pyrolysis, affecting its carbon sequestration capacity in practice. In this study, municipal sludge biochar (SZB), pharmaceutical sludge biochar (YCB), and chicken manure biochar (JFB) were prepared under the pyrolysis process at 500, 600, and 700℃, respectively, and their aging process in soil for 70-100 years was simulated. The physicochemical properties and the carbon loss calculation of the biochars were determined using elemental analysis, FTIR, XRF, ICP, and XRD. The results demonstrated that the type and mass fraction of endogenous minerals in the biochars determined their carbon loss during pyrolysis. Ca and Mg were the main carbon-protecting minerals, whereas Fe may have reduced the carbon stability of the sludge biochars and therefore increased the carbon loss. For the aging process, the stability of the endogenous carbon in the biochars played a major role in its carbon loss, whereas the endogenous minerals played a supporting role. These findings elucidated the effect of the stability of endogenous carbon and the composition of mineral components on the carbon loss of biochars, which may provide references for soil carbon sequestration using sludge and chicken manure biochar.


Asunto(s)
Carbono , Ganado , Animales , Estiércol , Aguas del Alcantarillado , Pollos , Suelo
17.
Materials (Basel) ; 16(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36769945

RESUMEN

Decarburization deteriorates the surface mechanical properties of steel. It refers to the loss of carbon from steel's surface when exposed to an open-air environment in elevated-temperature conditions. Despite the short interaction time and fast thermal cycle of the laser surface-hardening process, decarburization may still occur. This paper investigates if decarburization occurs during the laser surface hardening of AISI 420 martensitic stainless steel. For comparison, surface-hardening results and decarburizations in a conventional air furnace-heated hardening process (water-quenched and air-cooled) of the same steel material were also investigated. Decarburization seems to have occurred in the laser surface hardening of AISI 420SS. However, the decarburization might not be significant, as the hardness of the steel's surface was increased more than three times to 675 HV during the laser surface hardening, and the hardness drop due to decarburization was estimated to be only 3% with the decarburization depth of 40 µm. Simulations using ThermoCalc software to get the carbon concentration profiles along the depth for both laser-hardened and furnace-heated samples were also investigated.

18.
Environ Sci Pollut Res Int ; 30(23): 64576-64588, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37071353

RESUMEN

Microplastics (MPs) are increasingly being studied because they have become ubiquitous in aquatic and terrestrial environments. However, little is known about the negative effects of co-contamination by polypropylene microplastic (PP MPs) and heavy metal mixtures on terrestrial environment and biota. This study assessed the adverse effects of co-exposure to PP MPs and heavy metal mixture (Cu2+, Cr6+, and Zn2+) on soil quality and the earthworm Eisenia fetida. Soil samples were collected in the Dong Cao catchment, near Hanoi, Vietnam, and analyzed for changes in extracellular enzyme activity and carbon, nitrogen, and phosphorus availability in the soil. We determined the survival rate of earthworms Eisenia fetida that had ingested MPs and two doses of heavy metals (the environmental level - 1 × - and its double - 2 ×). Earthworm ingestion rates were not significantly impacted by the exposure conditions, but the mortality rate for the 2 × exposure conditions was 100%. Metal-associated PP MPs stimulated the activities of ß-glucosidase, ß-N-acetyl glucosaminidase, and phosphatase enzymes in soil. Principle component analysis showed that these enzymes were positively correlated with Cu2+ and Cr6+ concentrations, but negatively correlated with microbial activity. Zn2+ showed no correlation with soil extracellular enzyme activity or soil microbial activity. Our results showed that co-exposure of earthworms to MPs and heavy metals had no impact on soil nitrogen and phosphorus but caused a decrease in total soil carbon content, with a possible associated risk of increased CO2 emissions.


Asunto(s)
Metales Pesados , Oligoquetos , Contaminantes del Suelo , Animales , Microplásticos , Plásticos , Suelo , Carbono/farmacología , Contaminantes del Suelo/análisis , Metales Pesados/análisis
19.
Sci Total Environ ; 821: 153341, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085631

RESUMEN

Strong influences of climate and land-cover changes on terrestrial ecosystems urgently need to re-estimate forest carbon turnover time (τforest), i.e., the residence time of carbon (C) in the living forest carbon reservoir in China, to reduce uncertainties in ecosystem carbon sinks under ongoing climate change. However, in absence of accurate carbon loss (e.g., forest litterfall), τforest estimate based on the non-steady-state assumption (NSSA) in forest ecosystems across China is still unclear. In this study, thus, we first compiled a litterfall dataset with 1025 field observations, and applied a Random Forest (RF) algorithm with the linkage of gridded environmental variables to predict litterfall from 2000 to 2019 with a fine spatial resolution of 1 km and a temporal resolution of one year. Finally, τforest was also estimated with the data-driven litterfall product. Results showed that RF algorithm could well predict the spatial and temporal patterns of forest litterfall with a model efficiency of 0.58 and root mean square error of 78.7 g C m-2 year-1. Mean litterfall was 205.4 ± 1.1 Tg C year-1 (mean ± standard error) with a significant increasing trend of 0.65 ± 0.14 Tg C year-2 from 2000 to 2019 (p < 0.01), indicating an increasing carbon loss from litterfall. Mean τforest was 26.2 ± 0.1 years with a significant decreasing trend of -0.11 ± 0.02 years (p < 0.01) from 2000 to 2019. Climate change dominated the inter-annual variability of τforest in high latitude areas, and land-cover change dominated the regions with intensive human activities. These findings suggested that carbon loss from vegetation to the atmosphere becomes more quickly in recent decades, with significant implication for vegetation carbon cycling-climate feedbacks. Meanwhile, the developed litterfall and τforest datasets can serve as a benchmark for biogeochemical models to accurately estimate global carbon cycling.


Asunto(s)
Carbono , Ecosistema , Ciclo del Carbono , Secuestro de Carbono , China , Cambio Climático , Humanos
20.
Sci Total Environ ; 820: 153185, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35065130

RESUMEN

Decomposition of plant organic matter plays a key role in the terrestrial biogeochemical cycles. Sunlight has recently been identified as an important contributor to carbon [C] turnover through photodegradation, accelerating decomposition even in forest ecosystems where understorey solar irradiance remains relatively low. However, it is uncertain how C and nutrients dynamics respond to fluctuations in solar spectral irradiance caused by canopy structure (understorey vs. gaps) and season (open vs. closed canopy phenology). Spectral-attenuation treatments were used to compare litter decomposition over eight months, covering canopy phenology, in a temperate deciduous forest and an adjacent gap. Exposure to the full spectrum of sunlight increased the loss of litter C and lignin by 75% and 64% in the forest gap, and blue light was responsible for respectively 27% and 42% of that loss. Whereas in the understorey, C and lignin loss were similar among spectral-attenuation treatments over the experimental period, except prior to and during spring canopy flush when exposure to the full spectrum of sunlight promoted C loss by 15% overall, 80% of which was attributable to ultraviolet-B (UV-B) radiation. Nitrogen [N] was immobilized in the understorey during canopy flush before the canopy completely closed but N was swiftly released during canopy leaf-fall. Our study suggests that blue-driven photodegradation plays an important role in lignin decomposition and N dynamics in canopy gaps, whereas seasonal canopy phenology affecting sunlight reaching the forest floor drastically changes patterns of C and N in litter during decomposition. Hence, including sunlight dynamics driven by canopy structure and phenology would improve estimates of biogeochemical cycling in forests responding to changes in climate and land-use.


Asunto(s)
Ecosistema , Bosques , Clima , Hojas de la Planta/metabolismo , Estaciones del Año , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA