Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.075
Filtrar
Más filtros

Intervalo de año de publicación
1.
Circ Res ; 132(6): 690-703, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36779349

RESUMEN

BACKGROUND: Impaired beta-adrenergic receptor (ß1 and ß2AR) function following hypoxia underlies ischemic heart failure/stroke. Activation of PI3Kγ (phosphoinositide 3-kinase γ) by beta-adrenergic receptor leads to feedback regulation of the receptor by hindering beta-adrenergic receptor dephosphorylation through inhibition of PP2A (protein phosphatase 2A). However, little is known about PI3Kγ feedback mechanism in regulating hypoxia-mediated ß1 and ß2AR dysfunction and cardiac remodeling. METHODS: Human embryonic kidney 293 cells or mouse adult cardiomyocytes and C57BL/6 (WT) or PI3Kγ knockout (KO) mice were subjected to hypoxia. Cardiac plasma membranes and endosomes were isolated and evaluated for ß1 and ß2AR density and function, PI3Kγ activity and ß1 and ß2AR-associated PP2A activity. Metabolic labeling was performed to assess ß1 and ß2AR phosphorylation and epinephrine/norepinephrine levels measured post-hypoxia. RESULTS: Hypoxia increased ß1 and ß2AR phosphorylation, reduced cAMP, and led to endosomal accumulation of phosphorylated ß2ARs in human embryonic kidney 293 cells and WT cardiomyocytes. Acute hypoxia in WT mice resulted in cardiac remodeling and loss of adenylyl cyclase activity associated with increased ß1 and ß2AR phosphorylation. This was agonist-independent as plasma and cardiac epinephrine and norepinephrine levels were unaltered. Unexpectedly, PI3Kγ activity was selectively increased in the endosomes of human embryonic kidney 293 cells and WT hearts post-hypoxia. Endosomal ß1- and ß2AR-associated PP2A activity was inhibited upon hypoxia in human embryonic kidney 293 cells and WT hearts showing regulation of beta-adrenergic receptors by PI3Kγ. This was accompanied with phosphorylation of endogenous inhibitor of protein phosphatase 2A whose phosphorylation by PI3Kγ inhibits PP2A. Increased ß1 and ß2AR-associated PP2A activity, decreased beta-adrenergic receptor phosphorylation, and normalized cardiac function was observed in PI3Kγ KO mice despite hypoxia. Compared to WT, PI3Kγ KO mice had preserved cardiac response to challenge with ß1AR-selective agonist dobutamine post-hypoxia. CONCLUSIONS: Agonist-independent activation of PI3Kγ underlies hypoxia sensing as its ablation leads to reduction in ß1- and ß2AR phosphorylation and amelioration of cardiac dysfunction.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores Adrenérgicos beta , Animales , Humanos , Ratones , Endosomas/metabolismo , Epinefrina , Hipoxia/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Norepinefrina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Remodelación Ventricular
2.
Circ Res ; 133(3): 237-251, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37345556

RESUMEN

BACKGROUND: Progressive cardiac fibrosis leads to ventricular wall stiffness, cardiac dysfunction, and eventually heart failure, but the underlying mechanism remains unexplored. PDCD5 (programmed cell death 5) ubiquitously expresses in tissues, including the heart; however, the role of PDCD5 in cardiac fibrosis is largely unknown. Therefore, this study aims at exploring the possible role and underlying mechanisms of PDCD5 in the pathogenesis of cardiac fibrosis. METHODS AND RESULTS: PDCD5 levels were found to be elevated in the serum obtained from patients with cardiac fibrosis, in fibrotic mice heart tissues after myocardial infarction, and in cardiac fibroblasts stimulated by Ang II (angiotensin II)- or TGF-ß1 (transforming growth factor-ß1). Overexpression of PDCD5 in cardiac fibroblasts or treatment with PDCD5 protein reduced the expression of profibrogenic proteins in response to TGF-ß1 stimulation, while knockdown of PDCD5 increased fibrotic responses. It has been demonstrated that SMAD3, a protein that is also known as mothers against decapentaplegic homolog 3, directly upregulated PDCD5 during cardiac fibrosis. Subsequently, the increased PDCD5 promoted HDAC3 (histone deacetylase 3) ubiquitination, thus, inhibiting HDAC3 to reduce fibrotic responses. Fibroblast-specific knock-in of PDCD5 in mice ameliorated cardiac fibrosis after myocardial infarction and enhanced cardiac function, and these protective effects were eliminated by AAV9-mediated HDAC3 overexpression. CONCLUSIONS: The findings of this study demonstrated that PDCD5 is upregulated by SMAD3 during cardiac fibrosis, which subsequently ameliorated progressive fibrosis and cardiac dysfunction through HDAC3 inhibition. Thus, this study suggests that PDCD5 functions as a negative feedback factor on fibrotic signaling pathways and might serve as a potential therapeutic target to suppress the progression of fibrotic responses.


Asunto(s)
Infarto del Miocardio , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Infarto del Miocardio/metabolismo , Corazón , Fibroblastos/metabolismo , Apoptosis , Fibrosis , Proteína smad3/metabolismo , Miocardio/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 44(5): 1021-1030, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38572647

RESUMEN

AGT (angiotensinogen) is the unique precursor for the generation of all the peptides of the renin-angiotensin system, but it has received relatively scant attention compared to many other renin-angiotensin system components. Focus on AGT has increased recently, particularly with the evolution of drugs to target the synthesis of the protein. AGT is a noninhibitory serpin that has several conserved domains in addition to the angiotensin II sequences at the N terminus. Increased study is needed on the structure-function relationship to resolve many unknowns regarding AGT metabolism. Constitutive whole-body genetic deletion of Agt in mice leads to multiple developmental defects creating a challenge to use these mice for mechanistic studies. This has been overcome by creating Agt-floxed mice to enable the development of cell-specific deficiencies that have provided considerable insight into a range of cardiovascular and associated diseases. This has been augmented by the recent development of pharmacological approaches targeting hepatocytes in humans to promote protracted inhibition of AGT synthesis. Genetic deletion or pharmacological inhibition of Agt has been demonstrated to be beneficial in a spectrum of diseases experimentally, including hypertension, atherosclerosis, aortic and superior mesenteric artery aneurysms, myocardial dysfunction, and hepatic steatosis. This review summarizes the findings of recent studies utilizing AGT manipulation as a therapeutic approach.


Asunto(s)
Angiotensinógeno , Enfermedades Cardiovasculares , Enfermedades Metabólicas , Animales , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/genética , Angiotensinógeno/metabolismo , Angiotensinógeno/genética , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Terapia Molecular Dirigida
4.
Eur Heart J ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217601

RESUMEN

BACKGROUND AND AIMS: The detection of cancer therapy-related cardiac dysfunction (CTRCD) by reduction of left ventricular ejection fraction (LVEF) during chemotherapy usually triggers the initiation of cardioprotective therapy. This study addressed whether the same approach should be applied to patients with worsening of global longitudinal strain (GLS) without attaining thresholds of LVEF. METHODS: Strain sUrveillance during Chemotherapy for improving Cardiovascular Outcomes (SUCCOUR-MRI) was a prospective multicentre randomized controlled trial involving 14 sites. Of 355 patients receiving anthracyclines with normal baseline LVEF, 333 patients (age 59±13 years, 79% women) with at least one other CTRCD risk factor, able to undergo magnetic resonance imaging (MRI), GLS and 3D echocardiography were tracked over 12 months. A total of 105 patients (age 59±13 years, 75% women, 69% breast cancer) developing GLS-CTRCD (>12% relative reduction of GLS without a change in LVEF) between cardioprotection with neurohormonal antagonists versus usual care were randomized. The primary endpoint was 12-month change in MRI-LVEF; the secondary endpoint was MRI LVEF-defined CTRCD. RESULTS: During follow-up, 2 patients died and 2 developed heart failure. Most patients were randomized at 3 months (62%). Median doses of angiotensin inhibition/blockade and beta-blockade were 75% and 50% of respective targets; 21 (43%) had side-effects attributed to cardioprotection. Due to a smaller LVEF change from baseline with cardioprotection than usual care (-2.5±5.4% vs -5.6±5.9%, p=0.009), follow-up LVEF was higher after cardioprotection (59±5% vs 55±6%, p<0.0001). After adjustment for baseline LVEF, the mean (95% confidence interval) difference in the change in LVEF between the two groups was -3.6% (-1.8% to -5.5%, p<0.001). After cardioprotection, 1/49 patients developed 12-month LVEF-CTRCD, compared to 6/56 in usual care (p=0.075). GLS improved at 3 months post-randomization in the cardioprotection group, with little change with usual care. CONCLUSIONS: In patients with isolated GLS reduction after anthracyclines, cardioprotection is associated with better preservation of 12-month MRI-LVEF compared with usual care.

5.
J Mol Cell Cardiol ; 195: 83-96, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117176

RESUMEN

Aging is a critical risk factor for heart disease, including ischemic heart disease and heart failure. Cellular senescence, characterized by DNA damage, resistance to apoptosis and the senescence-associated secretory phenotype (SASP), occurs in many cell types, including cardiomyocytes. Senescence precipitates the aging process in surrounding cells and the organ through paracrine mechanisms. Generalized autophagy, which degrades cytosolic materials in a non-selective manner, is decreased during aging in the heart. This decrease causes deterioration of cellular quality control mechanisms, facilitates aging and negatively affects lifespan in animals, including mice. Although suppression of generalized autophagy could promote senescence, it remains unclear whether the suppression of autophagy directly stimulates senescence in cardiomyocytes, which, in turn, promotes myocardial dysfunction in the heart. We addressed this question using mouse models with a loss of autophagy function. Suppression of general autophagy in cardiac-specific Atg7 knockout (Atg7cKO) mice caused accumulation of senescent cardiomyocytes. Induction of senescence via downregulation of Atg7 was also observed in chimeric Atg7 cardiac-specific KO mice and cultured cardiomyocytes in vitro, suggesting that the effect of autophagy suppression upon induction of senescence is cell autonomous. ABT-263, a senolytic agent, reduced the number of senescent myocytes and improved cardiac function in Atg7cKO mice. Suppression of autophagy and induction of senescence were also observed in doxorubicin-treated hearts, where reactivation of autophagy alleviated senescence in cardiomyocytes and cardiac dysfunction. These results suggest that suppression of general autophagy directly induces senescence in cardiomyocytes, which in turn promotes cardiac dysfunction.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Autofagia , Senescencia Celular , Ratones Noqueados , Miocitos Cardíacos , Animales , Autofagia/genética , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratones , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Miocardio/metabolismo , Miocardio/patología , Sulfonamidas/farmacología , Doxorrubicina/farmacología , Envejecimiento/metabolismo , Compuestos de Anilina
6.
J Mol Cell Cardiol ; 193: 25-35, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768805

RESUMEN

The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.


Asunto(s)
Homeostasis , Miocitos Cardíacos , Proteínas de Unión al ARN , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Miocitos Cardíacos/metabolismo , Ratones , Caveolina 1/metabolismo , Caveolina 1/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Miocardio/metabolismo , Regulación de la Expresión Génica , Adenosina/análogos & derivados , Adenosina/metabolismo , Ratones Noqueados , Biosíntesis de Proteínas
7.
J Cell Mol Med ; 28(14): e18543, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054575

RESUMEN

The significance of iron in myocardial mitochondria function cannot be underestimated, because deviations in iron levels within cardiomyocytes may have profound detrimental effects on cardiac function. In this study, we investigated the effects of ferroportin 1 (FPN1) on cardiac iron levels and pathological alterations in mice subjected to chronic intermittent hypoxia (CIH). The cTNT-FPN1 plasmid was administered via tail vein injection to induce the mouse with FPN1 overexpression in the cardiomyocytes. CIH was established by exposing the mice to cycles of 21%-5% FiO2 for 3 min, 8 h per day. Subsequently, the introduction of hepcidin resulted in a reduction in FPN1 expression, and H9C2 cells were used to establish an IH model to further elucidate the role of FPN1. First, FPN1 overexpression ameliorated CIH-induced cardiac dysfunction, myocardial hypertrophy, mitochondrial damage and apoptosis. Second, FPN1 overexpression attenuated ROS levels during CIH. In addition, FPN1 overexpression mitigated CIH-induced cardiac iron accumulation. Moreover, the administration of hepcidin resulted in a reduction in FPN1 levels, further accelerating the CIH-induced levels of ROS, LIP and apoptosis in H9C2 cells. These findings indicate that the overexpression of FPN1 in cardiomyocytes inhibits CIH-induced cardiac iron accumulation, subsequently reducing ROS levels and mitigating mitochondrial damage. Conversely, the administration of hepcidin suppressed FPN1 expression and worsened cardiomyocyte iron toxicity injury.


Asunto(s)
Apoptosis , Cardiomegalia , Proteínas de Transporte de Catión , Hipoxia , Hierro , Miocitos Cardíacos , Especies Reactivas de Oxígeno , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/etiología , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hipoxia/metabolismo , Hipoxia/complicaciones , Ratones , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Masculino , Hepcidinas/metabolismo , Hepcidinas/genética , Línea Celular , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratas
8.
Apoptosis ; 29(9-10): 1663-1678, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38678130

RESUMEN

High-altitude exposure has been linked to cardiac dysfunction. Silent information regulator factor 2-related enzyme 1 (sirtuin 1, SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, plays a crucial role in regulating numerous cardiovascular diseases. However, the relationship between SIRT1 and cardiac dysfunction induced by hypobaric hypoxia (HH) remains unexplored. This study aims to assess the impact of SIRT1 on HH-induced cardiac dysfunction and delve into the underlying mechanisms, both in vivo and in vitro. In this study, we have demonstrated that exposure to HH results in cardiomyocyte injury, along with the downregulation of SIRT1 and mitochondrial dysfunction. Upregulating SIRT1 significantly inhibits mitochondrial fission, improves mitochondrial function, reduces cardiomyocyte injury, and consequently enhances cardiac function in HH-exposed rats. Additionally, HH exposure triggers aberrant expression of mitochondrial fission-regulated proteins, with a decrease in PPARγ coactivator 1 alpha (PGC-1α) and mitochondrial fission factor (MFF) and an increase in mitochondrial fission 1 (FIS1) and dynamin-related protein 1 (DRP1), all of which are mitigated by SIRT1 upregulation. Furthermore, inhibiting PGC-1α diminishes the positive effects of SIRT1 regulation on the expression of DRP1, MFF, and FIS1, as well as mitochondrial fission. These findings demonstrate that SIRT1 alleviates HHinduced cardiac dysfunction by preventing mitochondrial fission through the PGC-1α-DRP1/FIS1/MFF pathway.


Asunto(s)
Dinaminas , Dinámicas Mitocondriales , Proteínas Mitocondriales , Miocitos Cardíacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Dinaminas/metabolismo , Dinaminas/genética , Ratas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Hipoxia/metabolismo , Hipoxia/fisiopatología , Hipoxia/genética , Ratas Sprague-Dawley , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Apoptosis/genética , Altitud
9.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G385-G397, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252682

RESUMEN

A2AR-disrupted mice is characterized by severe systemic and visceral adipose tissue (VAT) inflammation. Increasing adenosine cyclase (AC), cAMP, and protein kinase A (PKA) formation through A2AR activation suppress systemic/VAT inflammation in obese mice. This study explores the effects of 4 wk A2AR agonist PSB0777 treatment on the VAT-driven pathogenic signals in hepatic and cardiac dysfunction of nonalcoholic steatohepatitis (NASH) obese mice. Among NASH mice with cardiac dysfunction, simultaneous decrease in the A2AR, AC, cAMP, and PKA levels were observed in VAT, liver, and heart. PSB0777 treatment significantly restores AC, cAMP, PKA, and hormone-sensitive lipase (HSL) levels, decreased SREBP-1/FASN, MCP-1, and CD68 levels, reduces infiltrated CD11b+ F4/80+ cells and adipogenesis in VAT of NASH + PSB0777 mice. The changes in VAT were accompanied by the suppression of hepatic and cardiac lipogenic/inflammatory/injury/apoptotic/fibrotic markers, the normalization of cardiac contractile [sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2)] marker, and cardiac dysfunction. The in vitro approach revealed that conditioned media (CM) of VAT of NASH mice (CMnash) trigger palmitic acid (PA)-like lipotoxic (lipogenic/inflammatory/apoptotic/fibrotic) effects in AML-12 and H9c2 cell systems. Significantly, A2AR agonist pretreatment-related normalization of A2AR-AC-cAMP-PKA levels was associated with the attenuation of CMnash-related upregulation of lipotoxic markers and the normalization of lipolytic (AML-12 cells) or contractile (H9C2 cells) marker/contraction. The in vivo and in vitro experiments revealed that A2AR agonists are potential agent to inhibit the effects of VAT inflammation-driven pathogenic signals on the hepatic and cardiac lipogenesis, inflammation, injury, apoptosis, fibrosis, hypocontractility, and subsequently improve hepatic and cardiac dysfunction in NASH mice.NEW & NOTEWORTHY Protective role of adenosine A2AR receptor (A2AR) and AC-cAMP-PKA signaling against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) possibly via its actions on adipocytes is well known in the past decade. Thus, this study evaluates pharmacological activities of A2AR agonist PSB0777, which has already demonstrated to treat NASH. In this study, the inhibition of visceral adipose tissue-derived pathogenic signals by activation of adenosine A2AR with A2AR agonist PSB0777 improves the hepatic and cardiac dysfunction of high-fat diet (HFD)-induced NASH mice.


Asunto(s)
Cardiopatías , Leucemia Mieloide Aguda , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Grasa Intraabdominal/patología , Adenosina/metabolismo , Ratones Obesos , Hígado/metabolismo , Inflamación/metabolismo , Fibrosis , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones Endogámicos C57BL
10.
Br J Haematol ; 204(5): 2049-2056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343073

RESUMEN

Iron overload from repeated transfusions has a negative impact on cardiac function, and iron chelation therapy may help prevent cardiac dysfunction in transfusion-dependent patients with myelodysplastic syndromes (MDS). TELESTO (NCT00940602) was a prospective, placebo-controlled, randomised study to evaluate the iron chelator deferasirox in patients with low- or intermediate-1-risk MDS and iron overload. Echocardiographic parameters were collected at screening and during treatment. Patients receiving deferasirox experienced a significant decrease in the composite risk of hospitalisation for congestive heart failure (CHF) or worsening of cardiac function (HR = 0.23; 95% CI: 0.05, 0.99; nominal p = 0.0322) versus placebo. No significant differences between the arms were found in left ventricular ejection fraction, ventricular diameter and mass or pulmonary artery pressure. The absolute number of events was low, but the enrolled patients were younger than average for patients with MDS, with no serious cardiac comorbidities and a modest cardiovascular risk profile. These results support the effectiveness of deferasirox in preventing cardiac damage caused by iron overload in this patient population. Identification of patients developing CHF is challenging due to the lack of distinctive echocardiographic features. The treatment of iron overload may be important to prevent cardiac dysfunction in these patients, even those with moderate CHF risk.


Asunto(s)
Deferasirox , Quelantes del Hierro , Sobrecarga de Hierro , Síndromes Mielodisplásicos , Humanos , Deferasirox/uso terapéutico , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/complicaciones , Masculino , Femenino , Quelantes del Hierro/uso terapéutico , Persona de Mediana Edad , Anciano , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/tratamiento farmacológico , Estudios Prospectivos , Benzoatos/uso terapéutico , Benzoatos/efectos adversos , Insuficiencia Cardíaca/etiología , Reacción a la Transfusión/etiología , Ecocardiografía , Adulto , Anciano de 80 o más Años , Triazoles/uso terapéutico , Triazoles/efectos adversos , Transfusión Sanguínea
11.
Artículo en Inglés | MEDLINE | ID: mdl-39331021

RESUMEN

The Ras-related GTP-binding protein D (RRAGD) gene plays a crucial role in cellular processes. Recently, RRAGD variants found in patients have been implicated in a novel disorder with kidney tubulopathy and dilated cardiomyopathy. Currently, the consequences of RRAGD variants at organismal level is unknown. Therefore, this study investigated the impact of RRAGD variants on cardiac function using zebrafish embryo model. Furthermore, the potential usage of rapamycin, an mTOR inhibitor, as a therapy was assessed in this model. Zebrafish embryos were injected with RRAGD p.S76L and p.P119R cRNA and the resulting heart phenotypes were studied. Our findings reveal that overexpression of RRAGD mutants resulted in decreased ventricular fractional shortening, ejection fraction, and pericardial swelling. In RRAGD S76L-injected embryos, lower survival and heartbeat were observed, while survival was unaffected in RRAGD P119R embryos. These observations were reversible following therapy with the mTOR inhibitor rapamycin. Moreover, no effects on electrolyte homeostasis were observed. Together, these findings indicate a crucial role of RRAGD for cardiac function. In the future, the molecular mechanisms by which RRAGD variants result in cardiac dysfunction, and if the effects of rapamycin are specific for RRAGD-dependent cardiomyopathy should be studied in clinical studies.

12.
Am J Physiol Heart Circ Physiol ; 327(4): H880-H895, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178027

RESUMEN

Chronic psychological stress is a recognized, yet understudied risk factor for heart disease, with potential sex-specific effects. We investigated whether chronic stress triggers sex-dependent cardiac dysfunction in isolated Wistar rat hearts subjected to ischemia-reperfusion injury. The experimental cohort underwent 1 h of daily restraint stress for 4 wk versus matched controls, followed by euthanasia (sodium pentobarbital) and heart excision for ex vivo perfusion. Blood analysis revealed sex-specific alterations in stress hormones and inflammatory markers. When compared with controls, chronic restraint stress (CRS) males displayed decreased plasma brain-derived neurotrophic factor (BDNF) levels (P < 0.05), whereas CRS females exhibited elevated plasma adrenocorticotropic hormone (ACTH) (P < 0.01) and reduced corticosterone (P < 0.001) alongside lower serum estradiol (P < 0.001) and estradiol/progesterone ratio (P < 0.01). Of note, CRS females showed increased serum cardiac troponin T (P < 0.05) and tumor necrosis factor-α (TNF-α) (P < 0.01) with suppressed interleukin (IL)-1α, IL-1ß, IL-6, and IL-10 levels (P < 0.05) when compared with controls. Ex vivo Langendorff perfusions revealed that CRS female hearts displayed impaired postischemic functional recovery for baseline stroke volume (SV, P < 0.01), work performance (P < 0.05), aortic output (AO, P < 0.05), coronary flow (CF, P < 0.01), and overall cardiac output (CO, P < 0.01) when compared with matched controls and CRS males (P < 0.05). Our findings reveal intriguing sex-specific responses at both the systemic and functional levels in stressed hearts. Here, the dysregulation of stress hormones, proinflammatory state, and potential underlying cardiomyopathy in females following the stress protocol renders them more prone to damage following myocardial ischemia. This study emphasizes the importance of incorporating sex as a biological variable in cardiac research focusing on stress-related cardiomyopathy.NEW & NOTEWORTHY Although chronic psychological stress is a risk factor for cardiovascular diseases, the underlying mechanisms remain poorly understood. This study revealed that chronic restraint stress resulted in systemic changes (dysregulated stress hormones, proinflammatory state) and potential cardiomyopathy in females versus controls and their male counterparts. The stressed female hearts also displayed reduced functional recovery following ex vivo ischemia-reperfusion. This highlights the importance of incorporating sex as a biological variable in cardiac research.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratas Wistar , Estrés Psicológico , Animales , Masculino , Femenino , Estrés Psicológico/fisiopatología , Estrés Psicológico/sangre , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Factores Sexuales , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Función Ventricular Izquierda , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Restricción Física , Citocinas/metabolismo , Citocinas/sangre , Corticosterona/sangre , Modelos Animales de Enfermedad , Hormona Adrenocorticotrópica/sangre , Corazón/fisiopatología , Corazón/inervación , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Estradiol/sangre , Miocardio/metabolismo
13.
Basic Res Cardiol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311910

RESUMEN

Patients with cancer face a significant risk of cardiovascular death, regardless of time since cancer diagnosis. Elderly patients are particularly more susceptible as cancer-associated cardiac complications present in advanced stage cancer. These patients may often present with symptoms observed in chronic heart failure (HF). Cardiac wasting, commonly observed in these patients, is a multifaceted syndrome characterized by systemic metabolic alterations and inflammatory processes that specifically affect cardiac function and structure. Experimental and clinical studies have demonstrated that cancer-associated cardiac wasting is linked with cardiac atrophy and altered cardiac morphology, which impairs cardiac function, particularly pertaining to the left ventricle. Therefore, this review aims to present a summary of epidemiologic data and pathophysiological mechanisms of cardiac wasting due to cancer, and future directions in this field.

14.
Basic Res Cardiol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483601

RESUMEN

Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; n = 16) for induction of AIC or saline as corresponding control (n = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (n = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, P < 0.001), impaired global longitudinal strain (-19.6 ± 2.0% vs. -16.6 ± 3.0%, P < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, P < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, P < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (CPlanar 0.07 ± 0.01 vs. 0.09 ± 0.01, P < 0.01; CSpherical 0.89 ± 0.01 vs. 0.87 ± 0.02, P < 0.05). CPlanar and CSpherical yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, P for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.

15.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643121

RESUMEN

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Asunto(s)
Insuficiencia Cardíaca , Selenoproteínas , Reductasa de Tiorredoxina-Disulfuro , Adulto , Anciano , Animales , Humanos , Ratas , Insuficiencia Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Selenoproteínas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
16.
J Transl Med ; 22(1): 161, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365674

RESUMEN

BACKGROUND: The autophagy adapter SQSTM1/p62 is crucial for maintaining homeostasis in various organs and cells due to its protein-protein interaction domains and involvement in diverse physiological and pathological processes. Vascular endothelium cells play a unique role in vascular biology and contribute to vascular health. METHODS: Using the Cre-loxP system, we generated mice with endothelium cell-specific knockout of p62 mediated by Tek (Tek receptor tyrosine kinase)-cre to investigate the essential role of p62 in the endothelium. In vitro, we employed protein mass spectrometry and IPA to identify differentially expressed proteins upon knockdown of p62. Immunoprecipitation assays were conducted to demonstrate the interaction between p62 and FN1 or LAMC2 in human umbilical vein endothelium cells (HUVECs). Additionally, we identified the degradation pathway of FN1 and LAMC2 using the autophagy inhibitor 3-methyladenine (3-MA) or proteasome inhibitor MG132. Finally, the results of immunoprecipitation demonstrated that the interaction between p62 and LAMC2 was abolished in the PB1 truncation group of p62, while the interaction between p62 and FN1 was abolished in the UBA truncation group of p62. RESULTS: Our findings revealed that p62 Endo mice exhibited heart, lung, and kidney fibrosis compared to littermate controls, accompanied by severe cardiac dysfunction. Immunoprecipitation assays provided evidence of p62 acting as an autophagy adapter in the autophagy-lysosome pathway for FN1 and LAMC2 degradation respectively through PB1 and UBA domain with these proteins rather than proteasome system. CONCLUSIONS: Our study demonstrates that defects in p62 within endothelium cells induce multi-organ fibrosis and cardiac dysfunction in mice. Our findings indicate that FN1 and LAMC2, as markers of (EndoMT), have detrimental effects on HUVECs and elucidate the autophagy-lysosome degradation mechanism of FN1 and LAMC2.


Asunto(s)
Cardiopatías , Proteína Sequestosoma-1 , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Endotelio/metabolismo , Cardiopatías/genética , Cardiopatías/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Fibrosis/genética , Fibrosis/metabolismo
17.
J Card Fail ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39419165

RESUMEN

Heart failure and cancer remain two of the leading causes of morbidity and mortality and the two disease entities are linked in a complex manner. Patients with cancer are at increased risk of cardiovascular complications related to the cancer therapies. The presence of cardiomyopathy or heart failure in a patient with new cancer diagnosis portends a high risk for adverse oncology and cardiovascular outcomes. With the rapid growth of cancer therapies, many of which interfere with cardiovascular homeostasis, heart failure practitioners need to be familiar with prevention, risk stratification, diagnosis, and management strategies in cardio-oncology. This Heart Failure Society of America statement addresses the complexities of heart failure care among patients with active cancer diagnosis and cancer survivors. Risk stratification, monitoring, and management of cardiotoxicity are presented across Stages A through D heart failure, with focused discussion on heart failure preserved ejection fraction and special populations such as survivors of childhood and young adulthood cancers. We provide an overview of the shared risk factors between cancer and heart failure, highlighting heart failure as a form of cardiotoxicity associated with many different cancer therapeutics. Finally, we discuss disparities in the care of patients with cancer and cardiac disease and present a framework for a multidisciplinary team approach and critical collaboration between heart failure, oncology, palliative care, pharmacy, and nursing teams in the management of these complex patients.

18.
Metabolomics ; 20(3): 46, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641695

RESUMEN

INTRODUCTION: Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES: We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS: The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS: The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS: PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.


Asunto(s)
Cardiopatías , Fenilbutiratos , Sepsis , Choque Séptico , Aminoácidos/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Cardiopatías/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Metabolómica , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Choque Séptico/complicaciones , Choque Séptico/tratamiento farmacológico , Animales , Ratones , Modelos Animales de Enfermedad , Catecol O-Metiltransferasa/efectos de los fármacos , Catecol O-Metiltransferasa/metabolismo , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo
19.
Toxicol Appl Pharmacol ; 492: 117113, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343043

RESUMEN

Cardiac ischaemia/reperfusion (I/R) impairs mitochondrial function, resulting in excessive oxidative stress and cardiomyocyte ferroptosis and death. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of redox homeostasis and has cardioprotective effects against various stresses. Here, we tested whether CBR-470-1, a noncovalent Nrf2 activator, can protect against cardiomyocyte death caused by I/R stress. Compared with vehicle treatment, the administration of CBR-470-1 (2 mg/kg) to mice significantly increased Nrf2 protein levels and ameliorated the infarct size, the I/R-induced decrease in cardiac contractile performance, and the I/R-induced increases in cell apoptosis, ROS levels, and inflammation. Consistently, the beneficial effects of CBR-470-1 on cardiomyocytes were verified in a hypoxia/reoxygenation (H/R) model in vitro, but this cardioprotection was dramatically attenuated by the GPX4 inhibitor RSL3. Mechanistically, CBR-470-1 upregulated Nrf2 expression, which increased the expression levels of antioxidant enzymes (NQO1, SOD1, Prdx1, and Gclc) and antiferroptotic proteins (SLC7A11 and GPX4) and downregulated the protein expression of p53 and Nlrp3, leading to the inhibition of ROS production and inflammation and subsequent cardiomyocyte death (apoptosis, ferroptosis and pyroptosis). In summary, CBR-470-1 prevented I/R-mediated cardiac injury possibly through inhibiting cardiomyocyte apoptosis, ferroptosis and pyroptosis via Nrf2-mediated inhibition of p53 and Nlrp3 and activation of the SLC7A11/GPX4 pathway. Our data also highlight that CBR-470-1 may serve as a valuable agent for treating ischaemic heart disease.

20.
Toxicol Appl Pharmacol ; 483: 116802, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38184280

RESUMEN

The incidence of postoperative myocardial injury remains high as the underlying pathogenesis is still unknown. The dorsal root ganglion (DRG) neurons express transient receptor potential vanilloid 1 (TRPV1) and its downstream effector, calcitonin gene-related peptide (CGRP) participating in transmitting pain signals and cardiac protection. Opioids remain a mainstay therapeutic option for moderate-to-severe pain relief clinically, as a critical component of multimodal postoperative analgesia via intravenous and epidural delivery. Evidence indicates the interaction of opioids and TRPV1 activities in DRG neurons. Here, we verify the potential impairment of myocardial viability by epidural usage of opioids in postoperative analgesia. We found that large dose of epidural morphine (50 µg) significantly worsened the cardiac performance (+dP/dtmax reduction by 11% and -dP/dtmax elevation by 24%, all P < 0.001), the myocardial infarct size (morphine vs Control, 0.54 ± 0.09 IS/AAR vs. 0.23 ± 0.06 IS/AAR, P < 0.001) and reduced CGRP in the myocardium (morphine vs. Control, 9.34 ± 2.24 pg/mg vs. 21.23 ± 4.32 pg/mg, P < 0.001), while induced definite suppression of nociception in the postoperative animals. It was demonstrated that activation of µ-opioid receptor (µ-OPR) induced desensitization of TRPV1 by attenuating phosphorylation of the channel in the dorsal root ganglion neurons, via inhibiting the accumulation of cAMP. CGRP may attenuated the buildup of ROS and the reduction of mitochondrial membrane potential in cardiomyocytes induced by hypoxia/reoxygenation. The findings of this study indicate that epidurally giving large dose of µ-OPR agonist may aggravate myocardial injury by inhibiting the activity of TRPV1/CGRP pathway.


Asunto(s)
Analgésicos Opioides , Péptido Relacionado con Gen de Calcitonina , Animales , Analgésicos Opioides/toxicidad , Péptido Relacionado con Gen de Calcitonina/farmacología , Receptores Opioides mu/agonistas , Morfina/toxicidad , Miocardio/patología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/patología , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/metabolismo , Ganglios Espinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA