Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.533
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 103(2): 1137-1191, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239451

RESUMEN

"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.


Asunto(s)
Anciano Frágil , Fragilidad , Humanos , Anciano , Ejercicio Físico , Obesidad , Adiposidad
2.
Physiol Rev ; 99(4): 1819-1875, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434538

RESUMEN

Metabolomics uses advanced analytical chemistry techniques to enable the high-throughput characterization of metabolites from cells, organs, tissues, or biofluids. The rapid growth in metabolomics is leading to a renewed interest in metabolism and the role that small molecule metabolites play in many biological processes. As a result, traditional views of metabolites as being simply the "bricks and mortar" of cells or just the fuel for cellular energetics are being upended. Indeed, metabolites appear to have much more varied and far more important roles as signaling molecules, immune modulators, endogenous toxins, and environmental sensors. This review explores how metabolomics is yielding important new insights into a number of important biological and physiological processes. In particular, a major focus is on illustrating how metabolomics and discoveries made through metabolomics are improving our understanding of both normal physiology and the pathophysiology of many diseases. These discoveries are yielding new insights into how metabolites influence organ function, immune function, nutrient sensing, and gut physiology. Collectively, this work is leading to a much more unified and system-wide perspective of biology wherein metabolites, proteins, and genes are understood to interact synergistically to modify the actions and functions of organelles, organs, and organisms.


Asunto(s)
Metabolismo Energético , Metaboloma , Metabolómica/métodos , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/fisiopatología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Flujo de Trabajo
3.
Circ Res ; 134(10): 1379-1397, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723031

RESUMEN

Chagas cardiomyopathy caused by infection with the intracellular parasite Trypanosoma cruzi is the most common and severe expression of human Chagas disease. Heart failure, systemic and pulmonary thromboembolism, arrhythmia, and sudden cardiac death are the principal clinical manifestations of Chagas cardiomyopathy. Ventricular arrhythmias contribute significantly to morbidity and mortality and are the major cause of sudden cardiac death. Significant gaps still exist in the understanding of the pathogenesis mechanisms underlying the arrhythmogenic manifestations of Chagas cardiomyopathy. This article will review the data from experimental studies and translate those findings to draw hypotheses about clinical observations. Human- and animal-based studies at molecular, cellular, tissue, and organ levels suggest 5 main pillars of remodeling caused by the interaction of host and parasite: immunologic, electrical, autonomic, microvascular, and contractile. Integrating these 5 remodeling processes will bring insights into the current knowledge in the field, highlighting some key features for future management of this arrhythmogenic disease.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Chagásica , Humanos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/parasitología , Arritmias Cardíacas/fisiopatología , Cardiomiopatía Chagásica/parasitología , Trypanosoma cruzi/patogenicidad , Enfermedad de Chagas/complicaciones , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/inmunología
4.
Circ Res ; 134(5): 572-591, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422173

RESUMEN

The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.


Asunto(s)
Anemia Hemolítica Congénita , Hipertensión Pulmonar , Animales , Femenino , Humanos , Presión Sanguínea , Biofisica , Hidropesía Fetal , Mamíferos
5.
Arterioscler Thromb Vasc Biol ; 44(5): 1031-1041, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511324

RESUMEN

Colchicine-an anti-inflammatory alkaloid-has assumed an important role in the management of cardiovascular inflammation ≈3500 years after its first medicinal use in ancient Egypt. Primarily used in high doses for the treatment of acute gout flares during the 20th century, research in the early 21st century demonstrated that low-dose colchicine effectively treats acute gout attacks, lowers the risk of recurrent pericarditis, and can add to secondary prevention of major adverse cardiovascular events. As the first Food and Drug Administration-approved targeted anti-inflammatory cardiovascular therapy, colchicine currently has a unique role in the management of atherosclerotic cardiovascular disease. The safe use of colchicine requires careful monitoring for drug-drug interactions, changes in kidney and liver function, and counseling regarding gastrointestinal upset. Future research should elucidate the mechanisms of anti-inflammatory effects of colchicine relevant to atherosclerosis, the potential role of colchicine in primary prevention, in other cardiometabolic conditions, colchicine's safety in cardiovascular patients, and opportunities for individualizing colchicine therapy using clinical and molecular diagnostics.


Asunto(s)
Enfermedades Cardiovasculares , Colchicina , Humanos , Antiinflamatorios/uso terapéutico , Antiinflamatorios/efectos adversos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Colchicina/uso terapéutico , Colchicina/efectos adversos , Interacciones Farmacológicas , Supresores de la Gota/uso terapéutico , Supresores de la Gota/efectos adversos , Resultado del Tratamiento
6.
Arterioscler Thromb Vasc Biol ; 44(1): 65-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942610

RESUMEN

Hypertension represents a major worldwide cause of death and disability, and it is becoming increasingly clear that available therapies are not sufficient to reduce the risk of major cardiovascular events. Various mechanisms contribute to blood pressure increase: neurohormonal activation, autonomic nervous system imbalance, and immune activation. Of note, the brain is an important regulator of blood pressure levels; it recognizes the peripheral perturbation and organizes a reflex response by modulating immune system and hormonal release to attempt at restoring the homeostasis. The connection between the brain and peripheral organs is mediated by the autonomic nervous system, which also modulates immune and inflammatory responses. Interestingly, an increased autonomic nervous system activity has been correlated with an altered immune response in cardiovascular diseases. The spleen is the largest immune organ exerting a potent influence on the cardiovascular system during disease and is characterized by a dense noradrenergic innervation. Taken together, these aspects led to hypothesize a key role of neuroimmune mechanisms in the onset and progression of hypertension. This review discusses how the nervous and splenic immune systems interact and how the mechanisms underlying the neuroimmune cross talk influence the disease progression.


Asunto(s)
Hipertensión , Bazo , Humanos , Sistema Inmunológico , Sistema Nervioso Autónomo , Encéfalo
7.
Proteomics ; 24(11): e2300391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556629

RESUMEN

Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli. Initial studies have attracted interest on how platelet agonists influence the composition of the pEV proteome. In the current study, we used physiological platelet agonists of varying potencies which reflect the microenvironments that platelets experience during thrombus formation: adenosine diphosphate, collagen, thrombin as well as a combination of thrombin/collagen to induce platelet activation and pEV generation. Proteomic profiling revealed that pEVs have an agonist-dependent altered proteome in comparison to their cells of origin, activated platelets. Furthermore, we found that various protein classes including those related to coagulation and complement (prothrombin, antithrombin, and plasminogen) and platelet activation (fibrinogen) are attributed to platelet EVs following agonist stimulation. This agonist-dependent altered proteome suggests that protein packaging is an active process that appears to occur without de novo protein synthesis. This study provides new information on the influence of physiological agonist stimuli on the biogenesis and proteome landscape of pEVs.


Asunto(s)
Plaquetas , Vesículas Extracelulares , Activación Plaquetaria , Proteoma , Proteómica , Trombina , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Humanos , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Trombina/farmacología , Trombina/metabolismo , Proteómica/métodos , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Colágeno/metabolismo
8.
Proteomics ; 24(16): e2400090, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148210

RESUMEN

Arterial thrombosis contributes to some of the most frequent causes of mortality globally, such as myocardial infarction and stroke. Platelets are essential mediators of physiological haemostasis and pathological thrombosis. Platelet activation is controlled by a multitude of signalling pathways. Upon activation, platelets shed platelet-derived extracellular vesicles (pEVs). In this Special Issue: Extracellular Vesicles, Moon et al. investigate the impact of various platelet agonists (thrombin, ADP, collagen) on the proteome of pEVs. The study demonstrates that pEVs exhibit an agonist-dependent altered proteome compared to their parent cells, with significant variations in proteins related to coagulation, complement, and platelet activation. The study observes the rapid generation of pEVs following agonist stimulation with specific proteome alterations that underscore an active packaging process. This commentary highlights the implications of their findings and discusses the role of pEV cargo in cardiovascular disease with potential novel therapeutic and diagnostic opportunities.


Asunto(s)
Plaquetas , Vesículas Extracelulares , Activación Plaquetaria , Proteoma , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Proteoma/metabolismo , Activación Plaquetaria/efectos de los fármacos , Proteómica/métodos , Trombina/metabolismo , Trombina/farmacología
9.
Pflugers Arch ; 476(3): 295-306, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177874

RESUMEN

Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.


Asunto(s)
Sistema Cardiovascular , Luz , Humanos , Ratas , Animales , Contaminación Lumínica , Presión Sanguínea , Frecuencia Cardíaca
10.
Mol Med ; 30(1): 131, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183264

RESUMEN

BACKGROUND: The severe course of COVID-19 causes cardiovascular injuries, although the mechanisms involved are still not fully recognized, linked, and understood. Their characterization is of great importance with the establishment of the conception of post-acute sequelae of COVID-19, referred to as long COVID, where blood clotting and endothelial abnormalities are believed to be the key pathomechanisms driving circulatory system impairment. METHODS: The presented study investigates temporal changes in plasma proteins in COVID-19 patients during hospitalization due to SARS-CoV-2 infection and six months after recovery by targeted SureQuant acquisition using PQ500 panel. RESULTS: In total, we identified 167 proteins that were differentially regulated between follow-up and hospitalization, which functionally aggregated into immune system activation, complement and coagulation cascades, interleukins signalling, platelet activation, and extracellular matrix organization. Furthermore, we found that temporal quantitative changes in acute phase proteins correlate with selected clinical characteristics of COVID-19 patients. CONCLUSIONS: In-depth targeted proteome investigation evidenced substantial changes in plasma protein composition of patients during and recovering from COVID-19, evidencing a wide range of functional pathways induced by SARS-CoV-2 infection. In addition, we show that a subset of acute phase proteins, clotting cascade regulators and lipoproteins could have clinical value as potential predictors of long-term cardiovascular events in COVID-19 convalescents.


Asunto(s)
Proteínas Sanguíneas , COVID-19 , Proteoma , SARS-CoV-2 , Humanos , COVID-19/sangre , Proteoma/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Anciano , Adulto , Proteómica/métodos , Proteínas de Fase Aguda/metabolismo
11.
Exp Physiol ; 109(4): 461-469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38031809

RESUMEN

An adequate supply of O2 is essential for the maintenance of cellular activity. Systemic or local hypoxia can be experienced during decreased O2 availability or associated with diseases, or a combination of both. Exposure to hypoxia triggers adjustments in multiple physiological systems in the body to generate appropriate homeostatic responses. However, with significant reductions in the arterial partial pressure of O2, hypoxia can be life-threatening and cause maladaptive changes or cell damage and death. To mitigate the impact of limited O2 availability on cellular activity, O2 chemoreceptors rapidly detect and respond to reductions in the arterial partial pressure of O2, triggering orchestrated responses of increased ventilation and cardiac output, blood flow redistribution and metabolic adjustments. In mammals, the peripheral chemoreceptors of the carotid body are considered to be the main hypoxic sensors and the primary source of excitatory feedback driving respiratory, cardiovascular and autonomic responses. However, current evidence indicates that the CNS contains specialized brainstem and spinal cord regions that can also sense hypoxia and stimulate brain networks independently of the carotid body inputs. In this manuscript, we review the discoveries about the functioning of the O2 chemoreceptors and their contribution to the monitoring of O2 levels in the blood and brain parenchyma and mounting cardiorespiratory responses to maintain O2 homeostasis. We also discuss the implications of the chemoreflex-related mechanisms in paediatric and adult pathologies.


Asunto(s)
Cuerpo Carotídeo , Hipoxia , Animales , Humanos , Niño , Células Quimiorreceptoras/fisiología , Cuerpo Carotídeo/metabolismo , Respiración , Pulmón , Mamíferos/metabolismo , Oxígeno/metabolismo
12.
Mol Cell Biochem ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126457

RESUMEN

The extensive application of plastics in different sectors such as packaging, building, textiles, consumer products, and several industries has increased in recent years. Emerging data have confirmed that plastic wastes and segregates are problematic issues in aquatic and terrestrial ecosystems. The decomposition of plastic particles (PPs) leads to the release of microplastics (MPs) and nanoplastics (NPs) into the surrounding environment and entry of these particles will be problematic in unicellular and multicellular creatures. It was suggested that PPs can easily cross all biological barriers and reach different organs, especially the cardiovascular system, with the potential to modulate several molecular pathways. It is postulated that the direct interaction of PPs with cellular and subcellular components induces genotoxicity and cytotoxicity within the cardiovascular system. Meanwhile, being inert carriers, PPs can intensify the toxicity of other contaminants inside the cardiovascular system. Here, in this review article, several underlying mechanisms related to PP toxicity in the cardiovascular system were discussed in detail.

13.
Circ Res ; 131(3): e70-e82, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726609

RESUMEN

Although the US Food and Drug Administration has not approved e-cigarettes as a cessation aid, industry has at times positioned their products in that way for adults trying to quit traditional cigarettes; however, their novelty and customizability have driven them into the hands of unintended users, particularly adolescents. Most new users of e-cigarette products have never smoked traditional cigarettes; therefore, understanding the respiratory and cardiovascular consequences of e-cigarette use has become of increasing interest to the research community. Most studies have been performed on adult e-cigarette users, but the majority of these study participants are either former traditional smokers or smokers who have used e-cigarettes to switch from traditional smoking. Therefore, the respiratory and cardiovascular consequences in this population are not attributable to e-cigarette use alone. Preclinical studies have been used to study the effects of naive e-cigarette use on various organ systems; however, almost all of these studies have used adult animals, which makes translation of health effects to adolescents problematic. Given that inhalation of any foreign substance can have effects on the respiratory and cardiovascular systems, a more holistic understanding of the pathways involved in toxicity could help to guide researchers to novel therapeutic treatment strategies. The goals of this scientific statement are to provide salient background information on the cardiopulmonary consequences of e-cigarette use (vaping) in adolescents, to guide therapeutic and preventive strategies and future research directions, and to inform public policymakers on the risks, both short and long term, of vaping.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Vapeo , American Heart Association , Humanos , Fumadores , Vapeo/efectos adversos
14.
Circ Res ; 130(11): 1723-1741, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617359

RESUMEN

Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.


Asunto(s)
Cardiopatías , Tubulina (Proteína) , Cardiopatías/tratamiento farmacológico , Humanos , Microtúbulos
15.
Circ Res ; 130(10): 1618-1641, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549373

RESUMEN

Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Hipertensión , Enfermedades Renales , Enzima Convertidora de Angiotensina 2 , Apolipoproteína L1/metabolismo , Enfermedades Cardiovasculares/epidemiología , Femenino , Humanos , Hipertensión/epidemiología , Enfermedades Renales/epidemiología , Masculino , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2
16.
Eur Radiol ; 34(2): 981-993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37580598

RESUMEN

OBJECTIVES: To assess the feasibility, precision, and accuracy of left ventricular (LV) and left atrial (LA) volumetric function evaluation from native magnetic resonance (MR) multislice 4D flow magnitude images. MATERIALS & METHODS: In this prospective study, 60 subjects without signs or symptoms of heart failure underwent 3T native cardiac MR multislice 4D flow and bSSFP-cine realtime imaging. LV and LA volumetric function parameters were evaluated from 4D flow magnitude (4D flow-cine) and bSSFP-cine data using standard software to obtain end-diastolic volume (EDV), end-systolic volume (ESV), ejection-fraction (EF), stroke-volume (SV), LV muscle mass (LVM), LA maximum volume, LA minimum volume, and LA total ejection fraction (LATEF). Stroke volumes derived from both imaging methods were further compared to 4D pulmonary artery flow-derived net forward volumes (NFV). Methods were compared by correlation and Bland-Altman analysis. RESULTS: Volumetric function parameters from 4D flow-cine and bSSFP-cine showed high to very high correlations (r = 0.83-0.98). SV, LA volumes and LATEF did not differ between methods. LV end-diastolic and end-systolic volumes were slightly underestimated (EDV: -2.9 ± 5.8 mL; ESV: -2.3 ± 3.8 mL), EF was slightly overestimated (EF: 0.9 ± 2.6%), and LV mass was considerably overestimated (LVM: 39.0 ± 11.4 g) by 4D flow-cine imaging. SVs from both methods correlated very highly with NFV (r = 0.91 in both cases) and did not differ from NFV. CONCLUSION: Native multislice 4D flow magnitude data allows precise evaluation of LV and LA volumetric parameters; however, apart from SV, LV volumetric parameters demonstrate bias and need to be referred to their respective normal values. CLINICAL RELEVANCE STATEMENT: Volumetric function assessment from native multislice 4D flow magnitude images can be performed with routinely used clinical software, facilitating the application of 4D flow as a one-stop-shop functional cardiac MR exam, providing consistent, simultaneously acquired, volume and flow data. KEY POINTS: • Native multislice 4D flow imaging allows evaluation of volumetric left ventricular and atrial function parameters. • Left ventricular and left atrial function parameters derived from native multislice 4D flow data correlate highly with corresponding standard cine-derived parameters. • Multislice 4D flow-derived volumetric stroke volume and net forward volume do not differ.


Asunto(s)
Función del Atrio Izquierdo , Imagen por Resonancia Magnética , Humanos , Estudios Prospectivos , Volumen Sistólico , Ventrículos Cardíacos/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados
17.
Eur J Neurol ; 31(2): e16110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37889890

RESUMEN

BACKGROUND: The known impairments of the cardiovascular system in Parkinson´s disease (PD) are caused by autonomic dysfunction and manifested mainly in postural hypotension, chronotropic insufficiency, and reduced heart rate variability. Other dysfunctions, mainly stress response, arrhythmia occurrence, and heart morphology changes, are still the subject of research. OBJECTIVES: To assess the heart rate and blood pressure reaction during exercise, advanced measurements of heart volumes and mass using cardiac magnetic resonance (CMR), and occurrence of arrhythmias in PD patients. METHODS: Thirty PD patients (19 men, mean age 57.5 years) without known cardiac comorbidities underwent bicycle ergometry, electrocardiogram Holter monitoring and CMR. Exercise and CMR parameters were compared with controls (24 subjects for ergometry, 20 for CMR). RESULTS: PD patients had lower baseline systolic blood pressure (SBP) (117.8 vs. 128.3 mmHg, p < 0.01), peak SBP (155.8 vs. 170.8 mmHg, p < 0.05), and lower heart rate increase (49.7 vs. 64.3 beats per minute, p < 0.01). PD patients had higher indexed left and right ventricular end-diastolic volumes (68.5 vs. 57.3, p = 0.003 and 73.5 vs. 61.0 mL/m2 , respectively) and also indexed left and right ventricular end-systolic volumes (44.1 vs. 39.0, p = 0.013 and 29.0 vs. 22.0 mL/m2 , p = 0.013, respectively). A high prevalence of atrial fibrillation (8 subjects, 26.7%) was found. CONCLUSIONS: This novel study combining functional and structural approaches showed that PD is linked with weaker blood pressure and heart rate reaction during exercise, increased myocardial mass and heart volumes compared to controls, and a high prevalence of atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Enfermedad de Parkinson , Masculino , Humanos , Persona de Mediana Edad , Fibrilación Atrial/complicaciones , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/epidemiología , Corazón , Imagen por Resonancia Magnética , Electrocardiografía
18.
BMC Cardiovasc Disord ; 24(1): 278, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811882

RESUMEN

BACKGROUND: Left ventricular thrombus (LVT) is a serious complication after myocardial infarction. However, due to its asymptomatic nature, early detection is challenging. We aimed to explore the differences in clinical correlates of LVT found in acute to subacute and chronic phases of myocardial infarction. METHODS: We collected data from 153 patients who were diagnosed with LVT after myocardial infarction at the Affiliated Hospital of Qingdao University from January 2013 to December 2022. Baseline information, inflammatory markers, transthoracic echocardiograph (TTE) data and other clinical correlates were collected. Patients were categorized into acute to subacute phase group (< 30 days) and chronic phase group (30 days and after) according to the time at which echocardiograph was performed. The resolution of thrombus within 90 days is regarded as the primary endpoint event. We fitted logistic regression models to relating clinical correlates with phase-specific thrombus resolution. RESULTS: For acute to subacute phase thrombus patients: C-reactive protein levels (OR: 0.95, 95% CI: 0.918-0.983, p = 0.003) were significantly associated with thrombus resolution. For chronic phase thrombus patients: anticoagulant treatment was associated with 5.717-fold odds of thrombus resolution (OR: 5.717, 95% CI: 1.543-21.18, p = 0.009). CONCLUSIONS: Higher levels of CRP were associated with lower likelihood of LVT resolution in acute phase myocardial infarction; Anticoagulant therapy is still needed for thrombus in the chronic stage of myocardial infarction.


Asunto(s)
Trombosis , Humanos , Masculino , Femenino , Persona de Mediana Edad , Factores de Tiempo , Trombosis/diagnóstico por imagen , Trombosis/etiología , Anciano , Factores de Riesgo , Anticoagulantes/uso terapéutico , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Estudios Retrospectivos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/diagnóstico , Biomarcadores/sangre , Resultado del Tratamiento , Cardiopatías/diagnóstico por imagen , Cardiopatías/etiología , Cardiopatías/diagnóstico , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , China , Ecocardiografía , Función Ventricular Izquierda
19.
BMC Cardiovasc Disord ; 24(1): 200, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582827

RESUMEN

BACKGROUND: IgG4-related disease is a fibro-inflammatory disorder with an unknown etiology, which can affect multiple organ systems, including the cardiovascular system. While most reported cases of cardiovascular involvement are primarily associated with the aorta, there have been sporadic reports of isolated cardiac involvement. CASE PRESENTATION: This paper presents a documented case of IgG4-related systemic disease with symptoms indicative of restrictive cardiomyopathy. Subsequent Cardiac Magnetic Resonance imaging revealed diffuse myopericardial involvement, characterized by pericardial thickening and enhancement, accompanied by subepicardial and myocardial infiltration. Considering the rarity of cardiac involvement in our case, we conducted a thorough review of the existing literature pertaining to various patterns of cardiac involvement in IgG4-related disease, as well as the diagnostic modalities that can be employed for accurate identification and assessment. CONCLUSIONS: This case report sheds light on the importance of recognizing and evaluating cardiac manifestations in IgG4-related systemic disease to facilitate timely diagnosis and appropriate management.


Asunto(s)
Enfermedad Relacionada con Inmunoglobulina G4 , Humanos , Enfermedad Relacionada con Inmunoglobulina G4/diagnóstico por imagen , Pericardio/diagnóstico por imagen , Imagen por Resonancia Magnética , Inmunoglobulina G
20.
Environ Res ; 261: 119694, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068971

RESUMEN

Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA