RESUMEN
This study was designed to evaluate the effects on hand catalepsy on parasympathetic tone assessed using Analgesia/Nociception Index (ANI) and on subjective rating of absorption, dissociation, and time perception among healthy volunteers. This was a randomized controlled trial including participants to a medical hypnosis congress in France. Ninety volunteers were randomized in two arms, all receiving a fifteen-minute positive hypnotic trance, with or without hand catalepsy. The relative parasympathetic tone assessed by ANI (Analgesia/Nociception Index), heart rate and respiratory rate were recorded at different times of the study protocol. The actual duration of the hypnotic session, calculated from eye closing to eye opening, was also recorded. At the end of the hypnotic trance, participants subjectively rated their level of absorption and dissociation on a 0-10 scale. They were also asked to estimate the duration of the hypnotic session from eye closing to eye opening. In total, ninety subjects were included in the study. One subject was excluded because of deviation in the protocol standard, leaving eighty-nine subjects for analysis. Subject characteristics were similar between groups. There was a statistically different increase in ANI and decrease in both heart rate and respiratory rate over time with no difference with or without hand catalepsy. There was no statistically significant difference in absorption and dissociation subjective scales between groups. The median [Q1-Q3] actual duration of hypnotic sessions was similar between the catalepsy and the control groups (9 [8-10] min vs. 8 [7-10] min, respectively). However, subjects in the catalepsy group estimated a longer duration of the hypnotic session (12 [10-15] min) than in the control group (10 [5-10] min) with a mean ± SD overestimation of 3 ± 4 min (p < 0.001). Parasympathetic comfort increased during the hypnotic trance with no difference between groups. However, adding hand catalepsy to a pleasant hypnotic trance did not appear to increase feelings of absorption or dissociation but created time distortion on the longer side that could be useful in some clinical settings. Nevertheless, further study is still needed to determine more precisely the physiological and psychological effects on hand catalepsy during the hypnotic trance.
RESUMEN
Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.
Asunto(s)
Aminofilina , Catalepsia , Modelos Animales de Enfermedad , Marcha , Haloperidol , Enfermedad de Parkinson , Animales , Catalepsia/tratamiento farmacológico , Catalepsia/inducido químicamente , Ratones , Masculino , Aminofilina/administración & dosificación , Aminofilina/farmacología , Aminofilina/uso terapéutico , Marcha/efectos de los fármacos , Haloperidol/administración & dosificación , Haloperidol/farmacología , Enfermedad de Parkinson/tratamiento farmacológicoRESUMEN
Seasonal affective disorder is characterized by depression during fall/winter as a result of shorter daylight. Catalepsy is a syndrome of some grave mental diseases. Both the neurotransmitter serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are involved in the pathophysiological mechanisms underlying catalepsy and depressive disorders. The aim was to compare the response of behavior and brain plasticity to photoperiod alterations in catalepsy-resistant C57BL/6J and catalepsy-prone CBA/Lac male mice. Mice of both strains were exposed for six weeks to standard-day (14 h light/10 h darkness) or short-day (4 h light/20 h darkness) conditions. Short photoperiod increased depressive-like behavior in both strains. Only treated CBA/Lac mice demonstrated increased cataleptic immobility, decreased brain 5-HT level, and the expression of Tph2 gene encoding the key enzyme for 5-HT biosynthesis. Mice of both strains maintained under short-day conditions, compared to those under standard-day conditions, showed a region-specific decrease in the brain transcription of the Htr1a, Htr4, and Htr7 genes. After a short photoperiod exposure, the mRNA levels of the BDNF-related genes were reduced in CBA/Lac mice and were increased in the C57BL/6J mice. Thus, the predisposition to catalepsy considerably influences the photoperiodic changes in neuroplasticity, wherein both C57BL/6J and CBA/Lac mice can serve as a powerful tool for investigating the link between seasons and mood.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Serotonina , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Catalepsia , Fotoperiodo , Susceptibilidad a Enfermedades , Plasticidad NeuronalRESUMEN
BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder. The major causative factors that progress the PD are age, genetic abnormalities, environmental factors and degeneration of dopamine neurons in substantia nigra. PD normally exerts a tonic inhibitory effect on striatal cholinergic interneurons. Anticholinergics act by normalizing the disequilibrium between striatal dopamine and acetylcholine-resulted reduction in tremors. OBJECTIVE: This study sought to evaluate the anti-Parkinson potential of dicyclomine in haloperidol (HAL)- and paraquat (PQT)-induced Parkinsonism models in mice. MATERIALS AND METHODS: Sixty albino mice were divided into six groups (n = 10) for each model. Group I: received distilled water 1 mL/kg, Group II: diseased group received HAL (1 mg/kg) for consecutive 21 days and PQT (2 mg/kg) every three days for three weeks, Group III: treated with sinemet (20 mg/kg), Group IV-VI: received 40, 80 and 160 mg/kg dose of dicyclomine, respectively, for consecutive 21 days. The effect of treatments on spontaneous locomotor activity and motor co-ordination was evaluated by using open field, rotarod, actophotometer and light and dark box tests. Cataleptic behavior was estimated by the block method and triple horizontal bar apparatus. Biochemical markers of oxidative stress and levels of neurotransmitters were estimated. RESULTS: Findings from this study showed that dicyclomine at highest dose level of 160 mg/kg prevented HAL- and PQT-induced PD through enhancement of antioxidant defense system. CONCLUSION: The study concluded that dicyclomine could be the potential drug in the management of Parkinsonism.
Asunto(s)
Diciclomina , Enfermedad de Parkinson Secundaria , Trastornos Parkinsonianos , Animales , Diciclomina/uso terapéutico , Modelos Animales de Enfermedad , Dopamina , Haloperidol , Ratones , Paraquat , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Sustancia NegraRESUMEN
The dopamine system plays an important role in regulating many brain functions, including the motor function. The blockade of dopamine receptors results in a serious motor dysfunction, such as catalepsy and Parkinsonism. However, the neuronal mechanism underlying the drug-induced motor dysfunction is not well understood. Here, we examine brain-wide activation patterns in Fos-enhanced green fluorescent protein reporter mice that exhibit cataleptic behavior induced by SCH39166, a dopamine D1-like receptor antagonist, and raclopride, a dopamine D2-like receptor antagonist. Support vector classifications showed that the orbital cortex (ORB) and striatum including the caudoputamen (CP) and nucleus accumbens (ACB), prominently contribute to the discrimination between brains of the vehicle-treated and both SCH39166- and raclopride-treated mice. Interregional correlations indicated that the increased functional connectivity of functional networks, including the ORB, CP, and ACB, is the common mechanism underlying SCH39166- and raclopride-induced cataleptic behavior. Moreover, the distinct mechanisms in the SCH39166- and raclopride-induced cataleptic behaviors are the decreased functional connectivity between three areas above and the cortical amygdala, and between three areas above and the anterior cingulate cortex, respectively. Thus, the alterations of functional connectivity in diverse brain regions, including the ORB, provide new insights on the mechanism underlying drug-induced movement disorders.
Asunto(s)
Benzazepinas/farmacología , Catalepsia/inducido químicamente , Cuerpo Estriado/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Corteza Prefrontal/efectos de los fármacos , Racloprida/farmacología , Animales , Catalepsia/fisiopatología , Cuerpo Estriado/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiologíaRESUMEN
The cannabis-derived molecules, ∆9 tetrahydrocannabinol (THC) and cannabidiol (CBD), are both of considerable therapeutic interest for a variety of purposes, including to reduce pain and anxiety and increase sleep. In addition to their other pharmacological targets, both THC and CBD are competitive inhibitors of the equilibrative nucleoside transporter-1 (ENT-1), a primary inactivation mechanism for adenosine, and thereby increase adenosine signaling. The goal of this study was to examine the role of adenosine A2A receptor activation in the effects of intraperitoneally administered THC alone and in combination with CBD or PECS-101, a 4'-fluorinated derivative of CBD, in the cannabinoid tetrad, elevated plus maze (EPM) and marble bury assays. Comparisons between wild-type (WT) and A2AR knock out (A2AR-KO) mice were made. The cataleptic effects of THC were diminished in A2AR-KO; no other THC behaviors were affected by A2AR deletion. CBD (5 mg/kg) potentiated the cataleptic response to THC (5 mg/kg) in WT but not A2AR-KO. Neither CBD nor THC alone affected EPM behavior; their combination produced a significant increase in open/closed arm time in WT but not A2AR-KO. Both THC and CBD reduced the number of marbles buried in A2AR-KO but not WT mice. Like CBD, PECS-101 potentiated the cataleptic response to THC in WT but not A2AR-KO mice. PECS-101 also reduced exploratory behavior in the EPM in both genotypes. These results support the hypothesis that CBD and PECS-101 can potentiate the cataleptic effects of THC in a manner consistent with increased endogenous adenosine signaling.
Asunto(s)
Cannabidiol/farmacología , Dronabinol/farmacología , Receptor de Adenosina A2A/metabolismo , Animales , Cannabidiol/análogos & derivados , Dronabinol/administración & dosificación , Conducta Exploratoria/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor de Adenosina A2A/deficienciaRESUMEN
Parkinson's disease (PD) is a major cause of morbidity and mortality among older individuals. Several researchers have suggested that iron chelators which cross the blood-brain barrier (BBB) might have clinical efficacy in treating PD. Therefore, efforts are made not only in order to improve the effect of L-dopa but also to introduce drugs which provide anti-parkinsonian and neuroprotective effects. In this study, quercetin, a flavonoid, exhibited noticeable neuroprotective effects via iron induced-oxidative stress-dependent apoptotic pathways. Our results suggested that quercetin significantly decreased the catalepsy and exhibited neuroprotective effects in rotenone-induced Parkinson. A model of rotenone-induced Parkinsonism in rats produced the decrease in glutathione, SOD, catalase, and serum iron concentration and the increase in H2O2 and lipid peroxidation activity. Quercetin efficiently halted the deleterious toxic effects of L-dopa, revealing normalization of catalepsy and rotarod score, in addition to amelioration of neurochemical parameters, indicating benefit of both symptomatic and neuroprotective therapies. In silico molecular docking studies have also shown that quercetin could be an ideal potential drug target for aromatic L-amino acid decarboxylase and human catechol-O-methyltransferase. In conclusion, quercetin possesses strong iron-chelating abilities and could be recommended as a disease-modifying therapy when administered in combination with L-dopa, early on in the course of Parkinson's disease.
Asunto(s)
Antiparkinsonianos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Quercetina/uso terapéutico , Animales , Antiparkinsonianos/farmacología , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Catecol O-Metiltransferasa/metabolismo , Humanos , Levodopa/efectos adversos , Levodopa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Quercetina/farmacologíaRESUMEN
A series of benzamide derivatives possessing potent dopamine D2 , serotonin 5-HT1A , and 5-HT2A receptor properties were synthesized and evaluated as potential antipsychotics. Among them, 5-(4-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)butoxy)-N-cyclopropyl-2-fluorobenzamide (4k) held the best pharmacological profile. It not only exhibited potent and balanced activities for the D2 , 5-HT1A , and 5-HT2A receptors, but was also endowed with low to moderate activities for the 5-HT2C , H1 , and M3 receptors, suggesting a low propensity for inducing weight gain or diabetes. In animal models, compound 4k reduced phencyclidine-induced hyperactivity with a high threshold for catalepsy or muscle relaxation induction. On the basis of its robust in vitro potency and in vivo efficacy in preclinical models of schizophrenia, 4k was selected as a candidate for further development.
Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/síntesis química , Antipsicóticos/química , Benzamidas/síntesis química , Benzamidas/química , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Fenciclidina/toxicidad , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Esquizofrenia/fisiopatología , Relación Estructura-ActividadRESUMEN
Antipsychotic drugs are the mainstay of psychotic disorders. The 'typical' antipsychotic agents are commonly employed for the positive symptoms of schizophrenia, though at an expense of extrapyramidal side effects (EPS). In the present study, we employed haloperidol (HP)-induced catalepsy model in mice to evaluate the role of adenosine receptor antagonist and cyclooxygenase (COX) enzyme inhibitor in the amelioration of EPS. HP produced a full blown catalepsy, akinesia and a significant impairment in locomotion and antioxidant status. Pre-treatment with COX inhibitor; naproxen (NPx) and adenosine receptor antagonist; caffeine (CAF), showed a significant impact on HP-induced cataleptic symptoms. Adenosine exerts pivotal control on dopaminergic receptors and is also involved in receptor internalization and recycling. On the other hand, prostaglandins (PGs) are implicated as neuro-inflammatory molecules released due to microglial activation in both Parkinson's disease (PD) and antipsychotics-induced EPS. The involvement of these neuroeffector molecules has led to the possibility of use of CAF and COX inhibitors as therapeutic approaches to reduce the EPS burden of antipsychotic drugs. Both these pathways seem to be interlinked to each other, where adenosine modulates the formation of PGs through transcriptional modulation of COXs. We observed an additive effect with combined treatment of NPx and CAF against HP-induced movement disorder. These effects lead us to propose that neuromodulatory pathways of dopaminergic circuitry need to be explored for further understanding and utilizing the full therapeutic potential of antipsychotic agents.
Asunto(s)
Enfermedades de los Ganglios Basales/tratamiento farmacológico , Catalepsia/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa/uso terapéutico , Haloperidol/efectos adversos , Actividad Motora/efectos de los fármacos , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Animales , Antipsicóticos/efectos adversos , Enfermedades de los Ganglios Basales/inducido químicamente , Cafeína/farmacología , Cafeína/uso terapéutico , Catalepsia/inducido químicamente , Inhibidores de la Ciclooxigenasa/farmacología , Masculino , Ratones , Naproxeno/farmacología , Naproxeno/uso terapéutico , Antagonistas de Receptores Purinérgicos P1/farmacología , Resultado del TratamientoRESUMEN
Parkinson's disease (PD) is a multifactorial chronic progressive neurodegenerative disease caused by age, genetic and environmental factors such as paraquat (PQT). PQT (a quartenary nitrogen herbicide) is implicated in some form of idiopathic PD. This study sought to investigate the protective effect of vinpocetine on paraquat-induced Parkinsonism in mice. Forty-eight male albino mice were randomly divided into 6 groups and treated orally as follows for 21 days; Group 1: vehicle normal (10 ml/kg), group 2: vehicle control (10 ml/kg); groups 3-5: vinpocetine (5, 10 or 20 mg/kg); group 6: vinpocetine (20 mg/kg). Animals in groups 2-5 were given PQT (10 mg/kg, i.p.) every 3 days for 3 weeks. The effect of treatments on spontaneous motor activity (open field test), muscle coordination (rotarod tests), cataleptic behaviour (bar test), and working memory (Y-maze test) were assayed. After the behavioural assay on day 21, the midbrain was isolated for estimation of oxidative stress and TNF-α. Intraperitoneal injection of paraquat significantly induced motor deficits, muscle incoordination, catalepsy and working memory impairment which was ameliorated by the pretreatment of mice with vinpocetine. In addition, paraquat injection caused marked increase in nitroso-oxidative stress markers with concomitant deficits in antioxidant enzymes activities (GSH and SOD) as well as induction of tumour necrotic factor-α (TNF-α) in the mid-brain which were attenuated by the pretreatment of mice with vinpocetine. Findings from this study showed that vinpocetine prevented paraquat-induced motor deficits, memory impairment, oxidative stress and neuroinflammation through enhancement of antioxidant defense system and inhibition of neuroinflammatory cytokine. Thus, could be a potential drug in the management of Parkinsonism.
Asunto(s)
Inflamación/metabolismo , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson Secundaria/prevención & control , Alcaloides de la Vinca/uso terapéutico , Animales , Glutatión/metabolismo , Herbicidas , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Paraquat , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Superóxido Dismutasa/metabolismo , Alcaloides de la Vinca/farmacologíaRESUMEN
PURPOSE OF THE RESEARCH: In this study, we appraised the effect of pre-treatment with intra-cerebro ventricular (i.c.v) microinjection of gastrodin (Gst) on catalepsy, motor imbalance, substantia nigra pars compacta (SNc) myeloperoxidase (MPO) activity, lipid peroxidation levels, nitric oxide (NO) production and total antioxidant capacity (TAC) in 6-hydroxydopamine (6-OHDA) rats model of PD. MATERIALS AND METHODS: Male Wistar rats were pre-treated with i.c.v microinjections of Gst (20, 40 and 80 µg/3 µl/rat) for five consecutive days. Then, catalepsy and motor balance were induced by unilateral infusion of 6-OHDA (8 µg/2 µl/rat) into the SNc. The anti-cataleptic and motor balance improving effect of Gst was assessed by the Bar test and Rotarod 3 weeks after neurotoxin injection, respectively. SNc MPO activity and lipid peroxidation levels, NO production and TAC were assessed at the end of behavioral experiments. RESULTS: Our data demonstrated that Gst pre-treatment significantly (p < 0.001) was prevented motor in-coordination and catalepsy in neurotoxin lesioned rats. The most motor improving effect was seen at 80 µg Gst (p < 0.001). Pre-treatment of parkinsonian rats with Gst meaningfully (p < 0.001) was suppressed MPO activity, lipid peroxidation and NO production. Furthermore, the TAC level in the SNc was increased (p < 0.001) in Gst-microinjected rats about to the normal non-parkinsonian animals. MAJOR CONCLUSIONS: In summary, pre-treatment with Gst abolished 6-OHDA-induced catalepsy and improved motor incoordination by decreasing: SNc MPO activity, lipid peroxidation levels and NO production, and restoring SNc levels of TAC to the levels of healthy rats.
Asunto(s)
Alcoholes Bencílicos/administración & dosificación , Catalepsia/prevención & control , Glucósidos/administración & dosificación , Microglía/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Animales , Catalepsia/inducido químicamente , Peroxidación de Lípido/efectos de los fármacos , Masculino , Microinyecciones , Óxido Nítrico/biosíntesis , Oxidación-Reducción , Oxidopamina , Trastornos Parkinsonianos/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Peroxidasa/antagonistas & inhibidores , Ratas , Ratas WistarRESUMEN
The effects of chronic 5-HT1A receptor activation on the behavior, functional activity of 5-HT1A receptors, and expression of key genes of the brain 5-HT system were studied in mice of the catalepsy-prone CBA strain and the catalepsy-resistant C57BL/6 strain. Chronic treatment with 8-Hydroxy-2-(di-n-propyl-amino)tetralin (8-OH-DPAT) (1.0 mg/kg i.p., 14 days) led to a significant decrease in the hypothermic response to acute administration of 8-OH-DPAT in CBA and C57BL/6 mice, which indicates the desensiti-zation of 5-HT1A receptors in both strains. Pretreatment with the 5-HT7 receptor agonist SB 269970 did not affect the hypothermic response to the acute administration of 8-OH-DPAT, which suggests an independent functional response of 5-HT1A receptors. The treatment did not induce any changes in the behavior in the open field paradigm in CBA mice, but significantly increased the total path, the time spent in the center, and the number of rearings in C57BL/6 mice, which indicates the enhancement of locomotor and exploratory activity in C57BL/6 mice. The chronic activation of 5-HT1A receptor downregulated 5-HT1A gene expression, as well as the expression of the gene that encodes tryptophan hydroxylase 2, a key enzyme of 5-HT biosynthesis, in the midbrain and the expression of the gene that encodes the 5-HT2A receptor in the frontal cortex of CBA, but not C57BL/6 mice. The obtained data provide a new evidence on the receptor-gene cross talk in the brain 5-HT system that may underlie the loss of pharmacological efficacy of 5-HT1A receptor agonists. In turn, the loss of the behavioral response and compensatory alterations in key genes of the brain 5-HT system in CBA mice suggests that catalepsy-prone and -resistant genotypes demonstrate different sensibility to the effects of drugs.
Asunto(s)
8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Catalepsia , Predisposición Genética a la Enfermedad , Receptor de Serotonina 5-HT1A , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Animales , Catalepsia/inducido químicamente , Catalepsia/genética , Catalepsia/metabolismo , Ratones , Ratones Endogámicos CBA , Ratones Mutantes , Receptor de Serotonina 5-HT1A/genética , Receptor de Serotonina 5-HT1A/metabolismoRESUMEN
The effects of antipsychotic drugs (APDs) on the adolescent brain are poorly understood despite a dramatic increase in prescription of these drugs in adolescents over the past twenty years. Neuronal systems continue to be remodeled during adolescence. Therefore, when given in adolescence, antipsychotic drugs (APDs) have the potential to affect this remodeling. In this study we investigated the effects of chronic 22-day risperidone treatment (1.3mg/kg/day) in both adolescent and adult rats. We examined short- and long-term changes in behaviour (catalepsy, locomotion and conditioned avoidance response (CAR)), and dopaminergic and serotonergic neurochemistry in the striatum and the nucleus accumbens. Here, we report that, both during chronic treatment and after a lengthy drug-free interval, risperidone induced a sensitised cataleptic response regardless of the age of exposure. Selectively in adolescents, risperidone-induced catalepsy was inversely correlated with striatal dopamine turnover immediately after chronic treatment. After a drug-free interval, a significant proportion of rats with prior adolescent risperidone treatment also failed to acquire CAR to a defined criterion. Our data provide evidence that the same chronic risperidone treatment regimen can induce contrasting short- and long-term neural outcomes in the adolescent and adult brains.
Asunto(s)
Antipsicóticos/efectos adversos , Catalepsia/inducido químicamente , Risperidona/efectos adversos , Factores de Edad , Animales , Antipsicóticos/administración & dosificación , Monoaminas Biogénicas/análisis , Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Catalepsia/sangre , Catalepsia/metabolismo , Catalepsia/fisiopatología , Corticosterona/sangre , Dopamina/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Risperidona/administración & dosificaciónRESUMEN
In the present study, a series of benzamides, endowed with potent dopamine D2, serotonin 5-HT1A and 5-HT2A receptors properties, was synthesized and evaluated as potential antipsychotics. Among them, 3-(4-(4-(6-fluorobenzo[d]isoxazol-3-yl)-piperidin-1-yl)butoxy)-N-methylbenzamide (21) and its fluoro-substituted analogue (22) held the best pharmacological binding profiles. They not only presented potent activities for D2, 5-HT1A, and 5-HT2A receptors, but were also endowed with low activities for 5-HT2C, H1 receptors and hERG channels, suggesting a low propensity of inducing weight gain and QT prolongation. In animal models, compounds 21 and 22 reduced phencyclidine-induced hyperactivity with a high threshold for catalepsy induction. It thus provides potential candidates for further preclinical studies.
Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Actividad Motora/efectos de los fármacos , Animales , Antipsicóticos/síntesis química , Antipsicóticos/química , Benzamidas/síntesis química , Benzamidas/química , Relación Dosis-Respuesta a Droga , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Fenciclidina , Relación Estructura-ActividadRESUMEN
Previous work from our labs has indicated that a tropane analog of haloperidol with potent D2 binding but designed to avoid the formation of MPP(+)-like metabolites, such as 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl)pyridin-1-ium (BCPP(+)) still produced catalepsy, suggesting a strong role for the D2 receptor in the production of catalepsy in rats, and hence EPS in humans. This study tested the hypothesis that further modifications of the tropane analog to produce compounds with less potent binding to the D2 receptor than haloperidol, would produce less catalepsy. These tests have now revealed that while haloperidol produced maximum catalepsy, these compounds produced moderate to low levels of catalepsy. Compound 9, with the least binding affinity to the D2R, produced the least catalepsy and highest Minimum Adverse Effective Dose (MAED) of the analogs tested regardless of their affinities at other receptors including the 5-HT1AR. These observations support the hypothesis that moderation of the D2 binding of the tropane analogs could reduce catalepsy potential in rats and consequently EPS in man.
Asunto(s)
Antipsicóticos/farmacología , Haloperidol/análogos & derivados , Haloperidol/farmacología , Receptores de Dopamina D2/metabolismo , Tropanos/química , Animales , Antipsicóticos/efectos adversos , Antipsicóticos/química , Apomorfina , Catalepsia/inducido químicamente , Relación Dosis-Respuesta a Droga , Haloperidol/efectos adversos , Haloperidol/química , Ratones , Estructura Molecular , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tropanos/efectos adversosRESUMEN
The development of new antipsychotics with pro-cognitive properties and less side effects represents a priority in schizophrenia drug research. In this study, we present for the first time a preclinical exploration of the effects of the promising natural atypical antipsychotic Methyl-2-Amino-3- Methoxybenzoate (MAM), a brain-penetrable protoalkaloid from the seed of the plant Nigella damascena. Using animal models related to hyperdopaminergic activity, namely the pharmacogenetic apomorphine (D2/D1 receptor agonist)-susceptible (APO-SUS) rat model and pharmacologically induced mouse and rat models of schizophrenia, we found that MAM reduced gnawing stereotypy and climbing behaviours induced by dopaminergic agents. This predicts antipsychotic activity. In line, MAM antagonized apomorphine-induced c-Fos and NPAS4 mRNA levels in post-mortem brain nucleus accumbens and dorsolateral striatum of APO-SUS rats. Furthermore, phencyclidine (PCP, an NMDA receptor antagonist) and 2,5-Dimethoxy-4-iodoamphetamine (DOI, a 5HT2A/2C receptor agonist) induced prepulse inhibition deficits, reflecting the positive symptoms of schizophrenia, which were rescued by treatment with MAM and atypical antipsychotics alike. Post-mortem brain immunostaining revealed that MAM blocked the strong activation of both PCP- and DOI-induced c-Fos immunoreactivity in a number of cortical areas. Finally, during a 28-day subchronic treatment regime, MAM did not induce weight gain, hyperglycemia, hyperlipidemia or hepato- and nephrotoxic effects, side effects known to be induced by atypical antipsychotics. MAM also did not show any cataleptic effects. In conclusion, its brain penetrability, the apparent absence of preclinical side effects, and its ability to antagonize positive and cognitive symptoms associated with schizophrenia make MAM an exciting new antipsychotic drug that deserves clinical testing.
Asunto(s)
Antipsicóticos , Esquizofrenia , Ratas , Ratones , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Apomorfina/farmacología , Apomorfina/uso terapéutico , Éteres de Hidroxibenzoatos/uso terapéutico , Modelos Animales de Enfermedad , CogniciónRESUMEN
BACKGROUND: Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS: This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS: Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS: The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.
Asunto(s)
Antipsicóticos , Arañas , Ratones , Masculino , Animales , Haloperidol/farmacología , Catalepsia/inducido químicamente , Catalepsia/tratamiento farmacológico , Antipsicóticos/efectos adversosRESUMEN
BACKGROUND: Patients with Functional Neurological Disorder (FND) experience complex patterns of motor and/or sensory symptoms. Treatment studies of psychological interventions are promising but limited. OBJECTIVES: The aim of the current pilot study is to investigate the effect of treatment consisting of a combination of hypnosis and catalepsy induction on FND symptom severity. METHODS: A within-subject waiting list-control design was used with 46 patients diagnosed with FND. The treatment consisted of 10 sessions. The primary outcome measure was FND symptom severity (The Psychogenic Movement Disorder Rating Scale; PMDRS). The secondary outcome measures were psychological distress and quality of life. RESULTS: The repeated measures (RM) ANOVA for the PMDRS as outcome measure revealed a significant effect for time with a large effect size (η2 = 0.679). Pairwise comparisons indicated that the effect of time in the treatment period was significant for the measure of FND symptom severity, whereas the waiting list period was not. The effect remained stable even at 8 weeks post treatment. As for the additional measurement, general psychological distress and quality of life, no statistically significant differences between individual time points were found. CONCLUSIONS: This pilot study showed that eight sessions of treatment consisting of a combination of hypnosis and catalepsy induction was effective in reducing FND symptom severity. Some explanations and limitations are provided in the paper as well as several avenues of future research.
Asunto(s)
Trastornos de Conversión , Hipnosis , Enfermedades del Sistema Nervioso , Humanos , Catalepsia/complicaciones , Proyectos Piloto , Calidad de Vida , Enfermedades del Sistema Nervioso/complicacionesRESUMEN
Theory predicts that males and females of dioecious species typically engage in an evolutionary sexual conflict over the frequency and choice of mating partner. Female sexual cannibalism, a particularly dramatic illustration of this conflict, is widespread in certain animal taxa including spiders. Nevertheless, females of some funnel weaving spiders that are generally aggressive to conspecifics enter a cataleptic state after male courtship, ensuring the males can mate without risk of attack. In this study, we demonstrated that the physical posture and duration, metabolites, and central neurotransmitters of females of Aterigena aculeata in sexual catalepsy closely resemble females in thanatosis but are distinct from those in anesthesia, indicating that the courted females feign death to eliminate the risk of potentially aggressive responses and thereby allow preferred males to mate. Unlike the taxonomically widespread thanatosis, which generally represents a deceptive visual signal that acts against the interest of the receivers, sexual catalepsy of females in the funnel weaving spiders may deliver a sexual-receptive signal to the courting males and thereby benefit both the signal senders and receivers. Therefore, sexual catalepsy in A. aculeata may not reflect a conflict but rather a confluence of interest between the sexes.