Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 132(5)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709916

RESUMEN

During cytokinesis, fission yeast coordinates actomyosin ring constriction with septum ingression, resulting in concentric furrow formation by a poorly defined mechanism. We report that Schizosaccharomyces pombe cells lacking the Cdc42 activator Gef1, combined with an activated allele of the formin, Cdc12, display non-concentric furrowing. Non-concentrically furrowing cells display uneven distribution of the scaffold Cdc15 along the ring. This suggests that, after ring assembly, uniform Cdc15 distribution along the ring enables proper furrow formation. We find that, after assembly, Cdc15 is recruited to the ring in an Arp2/3 complex-dependent manner and is decreased in the activated cdc12 mutant. Cdc15 at cortical endocytic patches shows increased levels and extended lifetimes in gef1 and activated cdc12 mutants. We hypothesize endocytosis helps recruit Cdc15 to assembled rings; uneven Cdc15 distribution at the ring occurs when endocytic patches contain increased Cdc15 levels and the patch-association rate is slow. Based on this, we developed a mathematical model that captures experimentally observed Cdc15 distributions along the ring. We propose that, at the ring, Gef1 and endocytic events promote uniform Cdc15 organization to enable proper septum ingression and concentric furrow formation.


Asunto(s)
Actomiosina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Citocinesis , Proteínas del Citoesqueleto/genética , Endocitosis , Proteínas de Unión al GTP/metabolismo , Modelos Teóricos , Mutación/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteínas de Schizosaccharomyces pombe/genética
2.
J Cell Sci ; 127(Pt 19): 4146-58, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25052092

RESUMEN

F-BAR domain proteins act as linkers between the cell cortex and cytoskeleton, and are involved in membrane binding and bending. Rga7 is one of the seven F-BAR proteins present in the fission yeast Schizosaccharomyces pombe. In addition to the F-BAR domain in the N-terminal region, Rga7 possesses a Rho GTPase-activating protein (GAP) domain at its C-terminus. We show here that Rga7 is necessary to prevent fragmentation of the contracting ring and incorrect septum synthesis. Accordingly, cultures of cells lacking Rga7 contain a higher percentage of dividing cells and more frequent asymmetric or aberrant septa, which ultimately might cause cell death. The Rga7 F-BAR domain is necessary for the protein localization to the division site and to the cell tips, and also for the Rga7 roles in cytokinesis. In contrast, Rga7 GAP catalytic activity seems to be dispensable. Moreover, we demonstrate that Rga7 cooperates with the two F-BAR proteins Cdc15 and Imp2 to ensure proper cytokinesis. We have also detected association of Rga7 with Imp2, and its binding partners Fic1 and Pxl1. Taken together, our findings suggest that Rga7 forms part of a protein complex that coordinates the late stages of cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis/fisiología , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Actomiosina/metabolismo , Estructura Terciaria de Proteína , Schizosaccharomyces/citología
3.
Exp Cell Res ; 320(2): 290-301, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24291222

RESUMEN

Fas ligand (FasL) is a death factor of the tumor necrosis factor superfamily. Like other members of this family of type II transmembrane proteins, FasL is subject to ectodomain shedding by a disintegrin and metalloproteinases (ADAMs) liberating soluble FasL and leaving membrane-integral N-terminal fragments (NTFs). These NTFs are further processed by intramembrane proteolysis through signal peptide peptidase-like 2a (SPPL2a), releasing intracellular domains (ICDs) which might translocate to the nucleus to regulate transcription. Previous work established that the proline-rich domain within the cytosolic N-terminus of FasL is required for protein-protein interactions with different Src homology 3 (SH3) or WW domain proteins. Distinct binding partners regulate FasL storage and surface appearance or are involved in other aspects of FasL biology. Given the large number of FasL interactors, we asked whether proteolytically processed FasL fragments associate with the same or distinct sets of SH3 domain proteins. To address this, we performed co-precipitation experiments using a monoclonal antibody directed against the FasL N-terminus for subsequent protein detection of full length FasL and NTFs/ICDs in Western blots. We demonstrate that members of the sorting nexin (SNX) family bind full length FasL and its N-terminal fragments whereas members of the Pombe Cdc15 homology (PCH) protein family bind full length FasL, but fail to associate with processed FasL. Thus, we provide first evidence that full length FasL and FasL fragments display selectivity regarding their association with intracellular binding partners. The differential binding most likely governs the fate and function of the intracellular FasL fragments.


Asunto(s)
Proteína Ligando Fas/química , Proteína Ligando Fas/metabolismo , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteolisis , Animales , Células Cultivadas , Células HEK293 , Humanos , Células Jurkat , Células K562 , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/química , Unión Proteica/fisiología , Mapeo de Interacción de Proteínas , Especificidad por Sustrato
4.
Cells ; 11(9)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563825

RESUMEN

The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Schizosaccharomyces , Humanos , Mitosis , Proteínas de Unión al GTP Monoméricas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/metabolismo , Cuerpos Polares del Huso/metabolismo
5.
Cells ; 11(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011608

RESUMEN

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.


Asunto(s)
Puntos de Control del Ciclo Celular , Mitosis , Saccharomycetales , Proteínas de Schizosaccharomyces pombe , Alelos , Anafase , Genes Dominantes , Metafase , Mutación/genética , Saccharomycetales/citología , Saccharomycetales/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Cuerpos Polares del Huso/metabolismo
6.
Genetics ; 213(4): 1341-1356, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591131

RESUMEN

Cdc42, a Rho-family GTPase, is a master regulator of cell polarity. Recently, it has been shown that Cdc42 also facilitates proper cytokinesis in the fission yeast Schizosaccharomyces pombe Cdc42 is activated by two partially redundant GEFs, Gef1 and Scd1. Although both GEFs activate Cdc42, their deletion mutants display distinct phenotypes, indicating that they are differentially regulated by an unknown mechanism. During cytokinesis, Gef1 localizes to the division site and activates Cdc42 to initiate ring constriction and septum ingression. Here, we report that the F-BAR protein Cdc15 promotes Gef1 localization to its functional sites. We show that cdc15 promotes Gef1 association with cortical puncta at the incipient division site to activate Cdc42 during ring assembly. Moreover, cdc15 phospho-mutants phenocopy the polarity phenotypes of gef1 mutants. In a hypermorphic cdc15 mutant, Gef1 localizes precociously to the division site and is readily detected at the cortical patches and the cell cortex. Correspondingly, the hypermorphic cdc15 mutant shows increased bipolarity during interphase and precocious Cdc42 activation at the division site during cytokinesis. Finally, loss of gef1 in hypermorphic cdc15 mutants abrogates the increased bipolarity and precocious Cdc42 activation phenotype. We did not see any change in the localization of the other GEF Scd1 in a Cdc15-dependent manner. Our data indicate that Cdc15 facilitates Cdc42 activation at the division site during cytokinesis at the cell cortex to promote bipolarity and this is mediated by promoting Gef1 localization to these sites.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Citocinesis , Proteínas de Unión al GTP/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fenotipo , Transducción de Señal
7.
Cell Rep ; 25(3): 772-783.e4, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332655

RESUMEN

Paxillin is a scaffold protein that participates in focal adhesion signaling in mammalian cells. Fission yeast paxillin ortholog, Pxl1, is required for contractile actomyosin ring (CAR) integrity and collaborates with the ß-glucan synthase Bgs1 in septum formation. We show here that Pxl1's main function is to recruit calcineurin (CN) phosphatase to the actomyosin ring; and thus the absence of either Pxl1 or calcineurin causes similar cytokinesis defects. In turn, CN participates in the dephosphorylation of the Cdc15 F-BAR protein, which recruits and concentrates Pxl1 at the CAR. Our findings suggest the existence of a positive feedback loop between Pxl1 and CN and establish that Pxl1 is a crucial component of the CN signaling pathway during cytokinesis.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Calcineurina/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al GTP/genética , Glucosiltransferasas/genética , Proteolisis , Proteínas de Schizosaccharomyces pombe/genética , beta-Glucanos/metabolismo
8.
Cell Cycle ; 17(2): 200-215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29166821

RESUMEN

Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.


Asunto(s)
ADN Ribosómico/química , Calor , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/metabolismo , Anafase , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al GTP/metabolismo , Ácidos Indolacéticos , Metafase/genética , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Telofase , Factores de Transcripción/antagonistas & inhibidores
9.
Methods Mol Biol ; 1369: 279-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26519319

RESUMEN

A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.


Asunto(s)
Ciclo Celular , Saccharomyces cerevisiae/fisiología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Citometría de Flujo , Proteínas de Unión al GTP/metabolismo , Hidroxiurea/farmacología , Factor de Apareamiento , Nocodazol/farmacología , Péptidos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA