Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolomics ; 15(4): 52, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911937

RESUMEN

INTRODUCTION: Specific oncogenotypes can produce distinct metabolic changes in cancer. Recently it is considered that metabolic reprograming contributes heavily to drug resistance. Aldehyde dehydrogenase 1A1 (ALDH1A1), is overexpressed in drug resistant lung adenocarcinomas and may be the cause of acquired drug resistance. However, how ALDH1A1 affects metabolic profiling in lung adenocarcinoma cells remains elusive. OBJECTIVE: We sought to investigate metabolic alterations induced by ALDH1A1 in lung adenocarcinoma in order to better understand the reprogramming and metabolic mechanism of resistance induced by ALDH1A1. METHODS: Metabolic alterations in lung adenocarcinoma HCC827-ALDH1A1 cells were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). HCC827-ALDH1A1 metabolic signatures were extracted by univariate and multivariate statistical analysis. Furthermore, metabolite enrichment analysis and pathway analysis were performed using MetaboAnalyst 4.0 software. RESULTS: Twenty-two metabolites were positively identified using authentic standards, including uridine monophosphate (UMP), uridine diphosphate (UDP), adenosine diphosphate (ADP), malic acid, malonyl-coenzyme A, nicotinamide adenine dinucleotide (NAD), coenzyme A and so on. Furthermore, metabolic pathway analysis revealed several dysregulated pathways in HCC827-ALDH1A1 cells, including nucleotide metabolism, urea cycle, tricarboxylic acid (TCA) cycle, and glycerol phospholipid metabolism etc. CONCLUSION: Lung cancer is the most frequent cause of cancer-related deaths worldwide. Nearly all patients eventually undergo disease progression due to acquired resistance. Mechanisms of biological acquired resistance need to be identified. Our study identified altered metabolites in HCC827-ALDH1A1 cells, enhancing our knowledge of lung adenocarcinoma metabolic alterations induced by ALDH1A1, creating a novel therapeutic pathway. These metabolic signatures of ALDH1A1 overexpression may shed light on molecular mechanisms in drug-resistant tumors, and on candidate drug targets. Furthermore, new molecular targets may provide the foundation for potential anticancer strategies for lung cancer therapy.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Redes y Vías Metabólicas , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
2.
Cell Rep ; 37(13): 110171, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965415

RESUMEN

Macrophages are often prominently present in the tumor microenvironment, where distinct macrophage populations can differentially affect tumor progression. Although metabolism influences macrophage function, studies on the metabolic characteristics of ex vivo tumor-associated macrophage (TAM) subsets are rather limited. Using transcriptomic and metabolic analyses, we now reveal that pro-inflammatory major histocompatibility complex (MHC)-IIhi TAMs display a hampered tricarboxylic acid (TCA) cycle, while reparative MHC-IIlo TAMs show higher oxidative and glycolytic metabolism. Although both TAM subsets rapidly exchange lactate in high-lactate conditions, only MHC-IIlo TAMs use lactate as an additional carbon source. Accordingly, lactate supports the oxidative metabolism in MHC-IIlo TAMs, while it decreases the metabolic activity of MHC-IIhi TAMs. Lactate subtly affects the transcriptome of MHC-IIlo TAMs, increases L-arginine metabolism, and enhances the T cell suppressive capacity of these TAMs. Overall, our data uncover the metabolic intricacies of distinct TAM subsets and identify lactate as a carbon source and metabolic and functional regulator of TAMs.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Lactatos/metabolismo , Neoplasias Pulmonares/patología , Linfocitos T/inmunología , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Complejo Mayor de Histocompatibilidad , Metaboloma , Ratones , Ratones Endogámicos C57BL , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA