Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765444

RESUMEN

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Asunto(s)
Evolución Biológica , Encéfalo/citología , Forma de la Célula/fisiología , Animales , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Transición Epitelial-Mesenquimal/genética , Expresión Génica , Gorilla gorilla , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Organoides/metabolismo , Pan troglodytes , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
2.
Annu Rev Cell Dev Biol ; 37: 257-283, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613816

RESUMEN

Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.


Asunto(s)
Glicocálix , Membrana Celular/metabolismo , Glicocálix/química , Glicocálix/metabolismo , Glicoproteínas , Humanos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo
3.
Cell ; 172(4): 758-770.e14, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425492

RESUMEN

The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.


Asunto(s)
División Celular Asimétrica/fisiología , Bacillus subtilis/fisiología , Cromosomas Bacterianos/metabolismo , Esporas Bacterianas/metabolismo , Translocación Genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Biosíntesis de Proteínas/fisiología , Esporas Bacterianas/genética , Esporas Bacterianas/ultraestructura
4.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086090

RESUMEN

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Asunto(s)
Vibrio cholerae/citología , Vibrio cholerae/patogenicidad , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Locomoción , Ratones , Peptidoglicano/metabolismo , Periplasma/metabolismo , Alineación de Secuencia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulencia
5.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240393

RESUMEN

The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Cristalino , Ratones , Animales , Cristalino/metabolismo , Epitelio/metabolismo , Actinas/metabolismo , Diferenciación Celular/fisiología
6.
Proc Natl Acad Sci U S A ; 121(7): e2309984121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324567

RESUMEN

The protein crescentin is required for the crescent shape of the freshwater bacterium Caulobacter crescentus (vibrioides). Crescentin forms a filamentous structure on the inner, concave side of the curved cells. It shares features with eukaryotic intermediate filament (IF) proteins, including the formation of static filaments based on long and parallel coiled coils, the protein's length, structural roles in cell and organelle shape determination and the presence of a coiled coil discontinuity called the "stutter." Here, we have used electron cryomicroscopy (cryo-EM) to determine the structure of the full-length protein and its filament, exploiting a crescentin-specific nanobody. The filament is formed by two strands, related by twofold symmetry, that each consist of two dimers, resulting in an octameric assembly. Crescentin subunits form longitudinal contacts head-to-head and tail-to-tail, making the entire filament non-polar. Using in vivo site-directed cysteine cross-linking, we demonstrated that contacts observed in the in vitro filament structure exist in cells. Electron cryotomography (cryo-ET) of cells expressing crescentin showed filaments on the concave side of the curved cells, close to the inner membrane, where they form a band. When comparing with current models of IF proteins and their filaments, which are also built from parallel coiled coil dimers and lack overall polarity, it emerges that IF proteins form head-to-tail longitudinal contacts in contrast to crescentin and hence several inter-dimer contacts in IFs have no equivalents in crescentin filaments. Our work supports the idea that intermediate filament-like proteins achieve their shared polymerization and mechanical properties through a variety of filament architectures.


Asunto(s)
Caulobacter crescentus , Filamentos Intermedios , Filamentos Intermedios/metabolismo , Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Caulobacter crescentus/metabolismo
7.
Mol Microbiol ; 121(2): 260-274, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173305

RESUMEN

There is growing evidence that bacterial morphology is closely related to their lifestyle. The helical Helicobacter pylori relies on its unique shape for survival and efficient colonization of the human stomach. Yet, they have been observed to transform into another distinctive morphology, the spherical coccoid. Despite being hypothesized to be involved in the persistence and transmission of this species, years of effort in deciphering the roles of the coccoid form remain fruitless since contrasting observations regarding its lifestyle were reported. Here, we discuss the two forms of H. pylori with a focus on the coccoid form, the molecular mechanism behind its morphological transformation, and experimental approaches to further develop our understanding of this phenomenon. We also propose a putative mechanism of the coccoid formation in H. pylori through induction of a type-I toxin-antitoxin (TA) system recently shown to influence the morphology of this species.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Estómago/microbiología , Infecciones por Helicobacter/microbiología
8.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980363

RESUMEN

Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.


Asunto(s)
Integrasas , Pez Cebra , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Mamíferos/metabolismo , Neuronas/metabolismo , Pez Cebra/metabolismo
9.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36440630

RESUMEN

Apical constriction powers amnioserosa contraction during Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generates pulsed apical constrictions during early closure. Persistent apicomedial and circumapical actomyosin complexes drive unpulsed constrictions that follow. Here, we show that the microtubule end-binding proteins EB1 and Patronin pattern constriction dynamics and contraction kinetics by coordinating the balance of actomyosin forces in the apical plane. We find that microtubule growth from moving Patronin platforms governs the spatiotemporal dynamics of apicomedial myosin through the regulation of RhoGTPase signaling by transient EB1-RhoGEF2 interactions. We uncover the dynamic reorganization of a subset of short non-centrosomally nucleated apical microtubules that surround the coalescing apicomedial myosin complex, trail behind it as it moves and disperse as the complex dissolves. We demonstrate that apical microtubule reorganization is sensitive to Patronin levels. Microtubule depolymerization compromised apical myosin enrichment and altered constriction dynamics. Together, our findings uncover the importance of reorganization of an intact apical microtubule meshwork, by moving Patronin platforms and growing microtubule ends, in enabling the spatiotemporal modulation of actomyosin contractility and, through it, apical constriction.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Animales , Actomiosina/metabolismo , Constricción , Proteínas Portadoras/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Drosophila/metabolismo
10.
Dev Dyn ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38169311

RESUMEN

BACKGROUND: Changes in epithelial cell shape reflects optimal cell packing and the minimization of surface free energy, but also cell-cell interactions, cell proliferation, and cytoskeletal rearrangements. RESULTS: Here, we studied the structure of the rat pleura in the first 15 days after birth. After pleural isolation and image segmentation, the analysis demonstrated a progression of epithelial order from postnatal day 1 (P1) to P15. The cells with the largest surface area and greatest shape variability were observed at P1. In contrast, the cells with the smallest surface area and most shape consistency were observed at P15. A comparison of polygonal cell geometries demonstrated progressive optimization with an increase in the number of hexagons (six-sided) as well as five-sided and seven-sided polygons. Analysis of the epithelial organization with Voronoi tessellations and graphlet motif frequencies demonstrated a developmental path strikingly distinct from mathematical and natural reference paths. Graph Theory analysis of cell connectivity demonstrated a progressive decrease in network heterogeneity and clustering coefficient from P1 to P15. CONCLUSIONS: We conclude that the rat pleura undergoes a striking change in pleural structure from P1 to P15. Further, a geometric and network-based approach can provide a quantitative characterization of these developmental changes.

11.
J Bacteriol ; 206(6): e0008924, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38819156

RESUMEN

Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.


Asunto(s)
Proteínas Arqueales , Proteínas Fimbrias , Regulación de la Expresión Génica Arqueal , Haloferax volcanii , Haloferax volcanii/genética , Haloferax volcanii/fisiología , Haloferax volcanii/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología
12.
Dev Biol ; 499: 59-74, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172642

RESUMEN

The molecular links between tissue-level morphogenesis and the differentiation of cell lineages in the pancreas remain elusive despite a decade of studies. We previously showed that in pancreas both processes depend on proper lumenogenesis. The Rab GTPase Rab11 is essential for epithelial lumen formation in vitro, however few studies have addressed its functions in vivo and none have tested its requirement in pancreas. Here, we show that Rab11 is critical for proper pancreas development. Co-deletion of the Rab11 isoforms Rab11A and Rab11B in the developing pancreatic epithelium (Rab11pancDKO) results in ∼50% neonatal lethality and surviving adult Rab11pancDKO mice exhibit defective endocrine function. Loss of both Rab11A and Rab11B in the embryonic pancreas results in morphogenetic defects of the epithelium, including defective lumen formation and lumen interconnection. In contrast to wildtype cells, Rab11pancDKO cells initiate the formation of multiple ectopic lumens, resulting in a failure to coordinate a single apical membrane initiation site (AMIS) between groups of cells. This results in an inability to form ducts with continuous lumens. Here, we show that these defects are due to failures in vesicle trafficking, as apical and junctional components remain trapped within Rab11pancDKO cells. Together, these observations suggest that Rab11 directly regulates epithelial lumen formation and morphogenesis. Our report links intracellular trafficking to organ morphogenesis in vivo and presents a novel framework for decoding pancreatic development.


Asunto(s)
Páncreas , Proteínas de Unión al GTP rab , Ratones , Animales , Epitelio/metabolismo , Membrana Celular/metabolismo , Isoformas de Proteínas/metabolismo , Páncreas/metabolismo , Morfogénesis , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
13.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36111497

RESUMEN

Attainment of proper cell shape and the regulation of cell migration are essential processes in the development of an organism. The mixed lineage leukemia (MLL or KMT2A) protein, a histone 3 lysine 4 (H3K4) methyltransferase, plays a critical role in cell-fate decisions during skeletal development and haematopoiesis in higher vertebrates. Rho GTPases - RhoA, Rac1 and CDC42 - are small G proteins that regulate various key cellular processes, such as actin cytoskeleton formation, the maintenance of cell shape and cell migration. Here, we report that MLL regulates the homeostasis of these small Rho GTPases. Loss of MLL resulted in an abnormal cell shape and a disrupted actin cytoskeleton, which lead to diminished cell spreading and migration. MLL depletion affected the stability and activity of Rho GTPases in a SET domain-dependent manner, but these Rho GTPases were not direct transcriptional targets of MLL. Instead, MLL regulated the transcript levels of their chaperone protein RhoGDI1 (also known as ARHGDIA). Using MDA-MB-231, a triple-negative breast cancer cell line with high RhoGDI1 expression, we show that MLL depletion or inhibition by small molecules reduces tumour progression in nude mice. Our studies highlight the central regulatory role of MLL in Rho/Rac/CDC42 signalling pathways. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Unión al GTP rho , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Ratones , Animales , Inhibidor alfa de Disociación del Nucleótido Guanina rho/genética , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Ratones Desnudos , Histonas/metabolismo , Lisina , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular/fisiología , Citoesqueleto de Actina/metabolismo , Metiltransferasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo
14.
Development ; 148(18)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712442

RESUMEN

Recognizing the crucial role of mechanical regulation and forces in tissue development and homeostasis has stirred a demand for in situ measurement of forces and stresses. Among emerging techniques, the use of cell geometry to infer cell junction tensions, cell pressures and tissue stress has gained popularity owing to the development of computational analyses. This approach is non-destructive and fast, and statistically validated based on comparisons with other techniques. However, its qualitative and quantitative limitations, in theory as well as in practice, should be examined with care. In this Primer, we summarize the underlying principles and assumptions behind stress inference, discuss its validity criteria and provide guidance to help beginners make the appropriate choice of its variants. We extend our discussion from two-dimensional stress inference to three dimensional, using the early mouse embryo as an example, and list a few possible extensions. We hope to make stress inference more accessible to the scientific community and trigger a broader interest in using this technique to study mechanics in development.


Asunto(s)
Uniones Intercelulares/fisiología , Animales , Embrión de Mamíferos/fisiología , Fenómenos Mecánicos , Presión , Estrés Mecánico
15.
Development ; 148(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408064

RESUMEN

Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.


Asunto(s)
Epitelio/anatomía & histología , Morfogénesis , Animales , Fenómenos Biomecánicos , Fenómenos Biofísicos , Forma de la Célula , Humanos , Modelos Biológicos
16.
Annu Rev Microbiol ; 73: 457-480, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206344

RESUMEN

Helical cell shape appears throughout the bacterial phylogenetic tree. Recent exciting work characterizing cell shape mutants in a number of curved and helical Proteobacteria is beginning to suggest possible mechanisms and provide tools to assess functional significance. We focus here on Caulobacter crescentus, Vibrio cholerae, Helicobacter pylori, and Campylobacter jejuni, organisms from three classes of Proteobacteria that live in diverse environments, from freshwater and saltwater to distinct compartments within the gastrointestinal tract of humans and birds. Comparisons among these bacteria reveal common themes as well as unique solutions to the task of maintaining cell curvature. While motility appears to be influenced in all these bacteria when cell shape is perturbed, consequences on niche colonization are diverse, suggesting the need to consider additional selective pressures.


Asunto(s)
Morfogénesis , Proteobacteria/citología , Proteobacteria/crecimiento & desarrollo , Adaptación Biológica , Animales , Microbiología Ambiental , Humanos
17.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142225

RESUMEN

The ∼1 200 known species in subphylum Saccharomycotina are a highly diverse clade of unicellular fungi. During its lifecycle, a typical yeast exhibits multiple cell types with various morphologies; these morphologies vary across Saccharomycotina species. Here, we synthesize the evolutionary dimensions of variation in cellular morphology of yeasts across the subphylum, focusing on variation in cell shape, cell size, type of budding, and filament production. Examination of 332 representative species across the subphylum revealed that the most common budding cell shapes are ovoid, spherical, and ellipsoidal, and that their average length and width is 5.6 µm and 3.6 µm, respectively. 58.4% of yeast species examined can produce filamentous cells, and 87.3% of species reproduce asexually by multilateral budding, which does not require utilization of cell polarity for mitosis. Interestingly, ∼1.8% of species examined have not been observed to produce budding cells, but rather only produce filaments of septate hyphae and/or pseudohyphae. 76.9% of yeast species examined have sexual cycle descriptions, with most producing one to four ascospores that are most commonly hat-shaped (37.4%). Systematic description of yeast cellular morphological diversity and reconstruction of its evolution promises to enrich our understanding of the evolutionary cell biology of this major fungal lineage.


Asunto(s)
Ascomicetos , Filogenia , Levaduras
18.
EMBO Rep ; 23(7): e54719, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35403820

RESUMEN

During transmission of malaria-causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane-associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin-GFP localizes at the cytoplasmic periphery and concavin(-) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(-) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(-) sporozoites are transmitted. Strikingly, motile concavin(-) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.


Asunto(s)
Anopheles , Malaria , Parásitos , Plasmodium , Animales , Anopheles/parasitología , Mamíferos , Esporozoítos/metabolismo
19.
Bull Math Biol ; 86(4): 39, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448618

RESUMEN

Metabolites have to diffuse within the sub-cellular compartments they occupy to specific locations where enzymes are, so reactions could occur. Conventional flux balance analysis (FBA), a method based on linear programming that is commonly used to model metabolism, implicitly assumes that all enzymatic reactions are not diffusion-limited though that may not always be the case. In this work, we have developed a spatial method that implements FBA on a grid-based system, to enable the exploration of diffusion effects on metabolism. Specifically, the method discretises a living cell into a two-dimensional grid, represents the metabolic reactions in each grid element as well as the diffusion of metabolites to and from neighbouring elements, and simulates the system as a single linear programming problem. We varied the number of rows and columns in the grid to simulate different cell shapes, and the method was able to capture diffusion effects at different shapes. We then used the method to simulate heterogeneous enzyme distribution, which suggested a theoretical effect on variability at the population level. We propose the use of this method, and its future extensions, to explore how spatiotemporal organisation of sub-cellular compartments and the molecules within could affect cell behaviour.


Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Forma de la Célula , Simulación por Computador , Difusión
20.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990464

RESUMEN

YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.


Asunto(s)
Algoritmos , Modelos Biológicos , Transducción de Señal , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Forma de la Célula , Células Cultivadas , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Humanos , Fenómenos Mecánicos , Poro Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA