Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400543

RESUMEN

Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (ß-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of ß-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.


Asunto(s)
Celulasas , Saccharomycetales , Celobiosa/metabolismo , Temperatura , Fermentación , Xilosa/metabolismo , Saccharomycetales/metabolismo , Etanol/metabolismo , Ingeniería Metabólica , Glucosa
2.
Biotechnol Bioeng ; 121(2): 580-592, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983971

RESUMEN

One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.


Asunto(s)
Celobiosa , Glucosiltransferasas , Glucosiltransferasas/metabolismo , Fosforilasas/metabolismo , Glucosa , Disacáridos , Sacarosa , Cinética , Fosfatos , Especificidad por Sustrato
3.
Biotechnol Bioeng ; 121(2): 566-579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986649

RESUMEN

The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.


Asunto(s)
Celobiosa , Fosforilasas , Celobiosa/química , Glucosiltransferasas/química , Glucosa , Sacarosa , Fosfatos
4.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373510

RESUMEN

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Deshidrogenasas de Carbohidratos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/química
5.
Microb Cell Fact ; 23(1): 146, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783303

RESUMEN

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS: Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION: The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.


Asunto(s)
Deshidrogenasas de Carbohidratos , Filogenia , Proteínas Recombinantes , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/enzimología , Celulosa/metabolismo , Secuencia de Aminoácidos
6.
Appl Microbiol Biotechnol ; 108(1): 62, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183486

RESUMEN

In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.


Asunto(s)
Nanopartículas del Metal , Oxidorreductasas , Oro , Glucosa 1-Deshidrogenasa , Bacterias
7.
J Labelled Comp Radiopharm ; 67(9): 308-313, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982015

RESUMEN

Due to the continuous rise in global incidence and severity of invasive fungal infections (IFIs), particularly among immunocompromised and immunodeficient patients, there is an urgent demand for swift and accurate fungal pathogen diagnosis. Therefore, the need for fungal-specific positron emission tomography (PET) imaging agents that can detect the infection in the early stages is increasing. Cellobiose, a disaccharide, is readily metabolized by fungal pathogens such as Aspergillus species. Recently, our group reported fluorine-18 labeled cellobiose, 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB), for specific imaging of Aspergillus infection. The positive imaging findings with very low background signal on delayed imaging make this ligand a promising fungal-specific imaging ligand. Inspired by this result, the decision was made to automate the radiolabeling procedure for better reproducibility and to facilitate clinical translation. A Trasis AllInOne (Trasis AIO) automated module was used for this purpose. The reagent vials contain commercially available 2-deoxy-2-[18F]fluoroglucose ([18F]FDG), glucose-1-phosphate, and enzyme (cellobiose phosphorylase). A Sep-Pak cartridge was used to purify the tracer. The overall radiochemical yield was 50%-70% (n = 6, decay corrected) in 75-min synthesis time with a radiochemical purity of > 98%. This is a highly reliable protocol to produce current good manufacturing practice (cGMP)-compliant [18F]FCB for clinical PET imaging.


Asunto(s)
Celobiosa , Celobiosa/síntesis química , Celobiosa/química , Celobiosa/análogos & derivados , Técnicas de Química Sintética , Automatización , Radioquímica
8.
Fungal Genet Biol ; 165: 103781, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36801368

RESUMEN

Low-cost plant substrates, such as soybean hulls, are used for various industrial applications. Filamentous fungi are important producers of Carbohydrate Active enZymes (CAZymes) required for the degradation of these plant biomass substrates. CAZyme production is tightly regulated by several transcriptional activators and repressors. One such transcriptional activator is CLR-2/ClrB/ManR, which has been identified as a regulator of cellulase and mannanase production in several fungi. However, the regulatory network governing the expression of cellulase and mannanase encoding genes has been reported to differ between fungal species. Previous studies showed that Aspergillus niger ClrB is involved in the regulation of (hemi-)cellulose degradation, although its regulon has not yet been identified. To reveal its regulon, we cultivated an A. niger ΔclrB mutant and control strain on guar gum (a galactomannan-rich substrate) and soybean hulls (containing galactomannan, xylan, xyloglucan, pectin and cellulose) to identify the genes that are regulated by ClrB. Gene expression data and growth profiling showed that ClrB is indispensable for growth on cellulose and galactomannan and highly contributes to growth on xyloglucan in this fungus. Therefore, we show that A. niger ClrB is crucial for the utilization of guar gum and the agricultural substrate, soybean hulls. Moreover, we show that mannobiose is most likely the physiological inducer of ClrB in A. niger and not cellobiose, which is considered to be the inducer of N. crassa CLR-2 and A. nidulans ClrB.


Asunto(s)
Aspergillus niger , Celulasa , Aspergillus niger/genética , Glycine max/metabolismo , Factores de Transcripción/genética , Celulosa/metabolismo , Celulasa/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética
9.
Chembiochem ; 24(22): e202300431, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37768852

RESUMEN

The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway - its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.


Asunto(s)
Deshidrogenasas de Carbohidratos , Electrones , Aminoácidos/metabolismo , Proteínas Fúngicas/química , Transporte de Electrón , Deshidrogenasas de Carbohidratos/química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Citocromos/metabolismo
10.
Metab Eng ; 75: 29-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343876

RESUMEN

Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous ß-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas putida , Simportadores , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Celobiosa/metabolismo , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , Proteómica , Celulosa/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Simportadores/metabolismo , Proteínas de Escherichia coli/genética
11.
J Exp Bot ; 74(3): 1022-1038, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36385320

RESUMEN

Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high ß-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Lactuca/genética , Celobiosa/metabolismo , Resistencia a la Enfermedad/genética , Botrytis/fisiología , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas
12.
Appl Microbiol Biotechnol ; 107(9): 2831-2842, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36930276

RESUMEN

Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside have been proven to possess many pharmacological activities and are potential candidate drug leads and herb supplements. However, their further development is largely limited due to low content in host plants. Few studies reported that both bioactive plant components are prepared through the bioconversion of baicalein that is considered as the common biosynthetic precursor of both compounds. Herein, we constructed a series of the engineered whole-cell bioconversion systems in which the deletion of competitive genes and the introduction of exogenous UDP-glucose supply pathway, glucosyltransferase, rhamnosyltransferase, and the UDP-rhamnose synthesis pathway are made. Using these engineered strains, the precursor baicalein is able to be transformed into baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, with high-titer production, respectively. The further optimization of fermentation conditions led to the final production of 568.8 mg/L and 877.0 mg/L for baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, respectively. To the best of our knowledge, it is the highest production in preparation of baicalein-7-O-glucoside from baicalein so far, while the preparation of baicalein-7-O-rhamnoside is the first reported via bioconversion approach. Our study provides a reference for the industrial production of high-value products baicalein-7-O-glucoside and baicalein-7-O-rhamnoside using engineered E. coli. KEY POINTS: • Integrated design for improving the intracellular UDP-glucose pool • High production of rare baicalein glycosides in the engineered E. coli • Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside.


Asunto(s)
Escherichia coli , Glicósidos , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósidos/metabolismo , Uridina Difosfato Glucosa/metabolismo , Glucosa/metabolismo , Flavonoides/metabolismo
13.
Bioprocess Biosyst Eng ; 46(9): 1279-1291, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450268

RESUMEN

Cellobiose 2-epimerase (CE) is ideally suited to synthesize lactulose from lactose, but the poor thermostability and catalytic efficiency restrict enzymatic application. Herein, a non-characterized CE originating from Caldicellulosiruptor morganii (CmCE) was discovered in the NCBI database. Then, a smart mutation library was constructed based on FoldX ΔΔG calculation and modeling structure analysis, from which a positive mutant D226G located within the α8/α9 loop exhibited longer half-lives at 65-75 °C as well as lower Km and higher kcat/Km values compared with CmCE. Molecular modeling demonstrated that the improvement of D226G was largely attributed to the rigidification of the flexible loop, the compactness of the catalysis pocket and the increment of substrate-binding capability. Finally, the yield of synthesizing lactulose catalyzed by D226G reached 45.5%, higher than the 35.9% achieved with CmCE. The disclosed effect of the flexible loop on enzymatic stability and catalysis provides insight to redesign efficient CEs to biosynthesize lactulose.


Asunto(s)
Lactosa , Lactulosa , Lactulosa/química , Lactosa/química , Celobiosa/química , Racemasas y Epimerasas/genética , Clostridiales , Diseño Asistido por Computadora
14.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901965

RESUMEN

Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoprotein catalyzing the oxidation reaction of ß-1,4-glycosidic-bonded sugars (lactose or cellobiose), which results in the formation of aldobionic acids and hydrogen peroxide as a byproduct. The biotechnological application of CDH requires the immobilization of the enzyme on a suitable support. As a carrier of natural origin used for CDH immobilization, chitosan seems to increase the catalytic potential of the enzyme, especially for applications as packaging in the food industry and as a dressing material in medical applications. The present study aimed to immobilize the enzyme on chitosan beads and determine the physicochemical and biological properties of immobilized CDHs obtained from different fungal sources. The chitosan beads with immobilized CDHs were characterized in terms of their FTIR spectra or SEM microstructure. The most effective method of immobilization in the proposed modification was the covalent bonding of enzyme molecules using glutaraldehyde, resulting in efficiencies ranging from 28 to 99%. Very promising results, compared to free CDH, were obtained in the case of antioxidant, antimicrobial, and cytotoxic properties. Summarizing the obtained data, chitosan seems to be a valuable material for the development of innovative and effective immobilization systems for biomedical applications or food packaging, preserving the unique properties of CDH.


Asunto(s)
Antiinfecciosos , Quitosano , Quitosano/química , Oxidación-Reducción , Peróxido de Hidrógeno , Oxidorreductasas , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
15.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833899

RESUMEN

Cellobiose phosphorylase (CBP) catalyzes the reversible phosphorolysis of cellobiose into α-glucose 1-phosphate and glucose. A CBP with a broadened substrate specificity would be more desirable when utilized to convert cellulose into amylose (PNAS, 110: 7182-7187, 2013) and to construct yeast that can phosphorolytically use cellodextrin to produce ethanol. Based on the structure differences in the catalytic loops of CBP and cellodextrin phosphorylase from Clostridium thermocellum (named CtCBP and CtCDP, respectively), CtCBP was mutated to change its substrate specificity. A single-site mutant S497G was identified to exhibit a 5.7-fold higher catalytic efficiency with cellotriose as a substrate in the phosphorolytic reaction compared to the wild type, without any loss of catalytic efficiency on its natural substrate, cellobiose. When the S497G variant was used in the transformation of mixed cellodextrin (cellobiose + cellotriose) to amylose, the amylose yield was significantly increased compared to that of wild-type CtCBP. A structure change in the substrate-binding pocket of the S497G variant accounted for its capacity to accept longer cellodextrins than cellobiose. Taken together, the modified CtCBP, S497G was confirmed to acquire a promising feature favorable to those application scenarios involving cellodextrin's phosphorolysis.


Asunto(s)
Celobiosa , Clostridium thermocellum , Clostridium thermocellum/genética , Almidón , Especificidad por Sustrato , Amilosa , Celulosa/química , Glucosiltransferasas/metabolismo , Glucosa
16.
Planta ; 256(1): 10, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697869

RESUMEN

MAIN CONCLUSION: The simultaneous perception of endogenous and exogenous danger signals potentiates PAMP-triggered immunity in tomato and other downstream defence responses depending on the origin of the signal. Abstract Plant cells perceive a pathogen invasion by recognising endogenous or exogenous extracellular signals such as Damage-Associated Molecular Patterns (DAMPs) or Pathogen-Associated Molecular Patterns (PAMPs). In particular, DAMPs are intracellular molecules or cell wall fragments passive or actively released to the apoplast, whose extracellular recognition by intact cells triggers specific immune signalling, the so-called DAMP-triggered immunity. The extracellular recognition of DAMPs and PAMPs leads to a very similar intracellular signalling, and this similarity has generated a biological need to know why plants perceive molecules with such different origins and with overlapped innate immunity responses. Here, we report that the simultaneous perception of DAMPs and a PAMP strengthens early and late plant defence responses. To this aim, we studied classical PTI responses such as the generation of ROS and MAPK phosphorylation, but we also monitored the biosynthesis of phytocytokines and performed a non-targeted metabolomic analysis. We demonstrate that co-application of the bacterial peptide flagellin with the DAMPs cyclic AMP or cellobiose amplifies PAMP-triggered immunity responses. Both co-applications enhanced the synthesis of phytocytokines, but only simultaneous treatments with cAMP strengthened the flagellin-dependent metabolomic responses. In addition, cAMP and cellobiose treatments induced resistance against the hemibiotrophic bacteria Pseudomonas syringae pv. tomato DC3000. Overall, these results indicate that the complex mixture of DAMPs and PAMPs carries specific information that potentiates plant defence responses. However, downstream responses seem more specific depending on the composition of the mixture.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Solanum lycopersicum , Celobiosa , Flagelina/farmacología , Inmunidad Innata , Solanum lycopersicum/microbiología , Percepción , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Pseudomonas syringae
17.
Microb Cell Fact ; 21(1): 124, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729556

RESUMEN

Replacement of petrochemical-based materials with microbially produced biodegradable alternatives calls for industrially attractive fermentation processes. Lignocellulosic materials offer non-edible alternatives for cultivated sugars, but require often use of expensive sugar releasing enzymes, such as ß-glucosidases. These cellulose treatment costs could be reduced if microbial production hosts could use short cellodextrins such as cellobiose directly as their substrates. In this study, we demonstrate production of poly(hydroxybutyrate) (PHB) in yeast Saccharomyces cerevisiae using cellobiose as a sole carbon source. Yeast strains expressing PHB pathway genes from Cupriavidus necator and cellodextrin transporter gene CDT-1 from Neurospora crassa were complemented either with ß-glucosidase gene GH1-1 from N. crassa or with cellobiose phosphorylase gene cbp from Ruminococcus flavefaciens. These cellobiose utilization routes either with Gh1-1 or Cbp enzymes differ in energetics and dynamics. However, both routes enabled higher PHB production per consumed sugar and higher PHB accumulation % of cell dry weight (CDW) than use of glucose as a carbon source. As expected, the strains with Gh1-1 consumed cellobiose faster than the strains with Cbp, both in flask and bioreactor batch cultures. In shake flasks, higher final PHB accumulation % of CDW was reached with Cbp route (10.0 ± 0.3%) than with Gh1-1 route (8.1 ± 0.2%). However, a higher PHB accumulation was achieved in better aerated and pH-controlled bioreactors, in comparison to shake flasks, and the relative performance of strains switched. In bioreactors, notable PHB accumulation levels per CDW of 13.4 ± 0.9% and 18.5 ± 3.9% were achieved with Cbp and Gh1-1 routes, respectively. The average molecular weights of accumulated PHB were similar using both routes; approximately 500 kDa and 450 kDa for strains expressing either cbp or GH1-1 genes, respectively. The formation of PHB with high molecular weights, combined with efficient cellobiose conversion, demonstrates a highly potential solution for improving attractiveness of sustainable polymer production using microbial cells.


Asunto(s)
Celobiosa , Saccharomyces cerevisiae , Carbono/metabolismo , Celobiosa/metabolismo , Fermentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta-Glucosidasa/metabolismo
18.
J Ind Microbiol Biotechnol ; 49(3)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35289917

RESUMEN

Cellobiose, a natural disaccharide, attracts extensive attention as a potential functional food/feed additive. In this study, we present an inorganic phosphate (Pi) self-sufficient biotransformation system to produce cellobiose by co-expressing sucrose phosphorylase (SP) and cellobiose phosphorylase (CBP). The Bifidobacterium adolescentis SP (BASP) and Cellvibrio gilvus CBP (CGCBP) were co-expressed in Escherichia coli. Escherichia coli cells containing BASP and CGCBP were used as whole-cell catalysts to convert sucrose and glucose to cellobiose. The effects of reaction pH, temperature, Pi concentration, and substrate concentration were investigated. In the optimum biotransformation conditions, 800 mM cellobiose was produced from 1.0 M sucrose, 1.0 M glucose, and 50 mM Pi, within 12 hr. The by-product fructose and residual substrate (sucrose and glucose) were efficiently removed by treatment with yeast, to help purify the product cellobiose. The wider applicability of this Pi self-sufficiency strategy was demonstrated in the production of laminaribiose by co-expressing SP and laminaribiose phosphorylase. This study suggests that the Pi self-sufficiency strategy through co-expressing two phosphorylases has the advantage of great flexibility for enhanced production of cellobiose (or laminaribiose).


Asunto(s)
Celobiosa , Fosfatos , Celobiosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Glucosiltransferasas/metabolismo , Fosforilasas/química , Fosforilasas/genética , Sacarosa
19.
Bioprocess Biosyst Eng ; 45(6): 1057-1064, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35412074

RESUMEN

Pseudomonas taetrolens has previously been shown to convert cellobiose to cellobionic acid (CBA), which can potentially be used in cosmetics, food, and pharmaceutical industries. The cellobiose-oxidizing activity of the P. taetrolens strain, which expressed the homologous quinoprotein glucose dehydrogenase (GDH), was increased by approximately 50.8% compared to the original strain. Whole-cell biocatalyst (WCB) of the genetically modified P. taetrolens strain [pDSK-GDH] was prepared simply by fermentation and washing processes. Reaction conditions for the proper use of WCB, such as reaction temperature, cell density to be added, and cell harvest time for preparing WCB, were investigated. The highest CBA productivity (18.2 g/L/h) was achieved when WCB prepared in the late-exponential phase of cell culture was used at 35 °C with cell density of 10 at OD600nm. Under these conditions, 200 g/L of cellobiose was all converted to CBA in 11 h, and the WCB of P. taetrolens [pDSK-GDH] maintained the maximum catalytic activity during at least six cycles without a significant decline in the productivity. Our results suggest that the manufacture of WCB based on genetically engineered P. taetrolens and its optimized use could be further developed as an economically viable option for the large-scale production of CBA.


Asunto(s)
Celobiosa , Disacáridos , Pseudomonas/genética , Pseudomonas/metabolismo
20.
Prep Biochem Biotechnol ; 52(6): 611-617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34550864

RESUMEN

We previously reported an in vitro enzymatic pathway for conversion of nonfood cellulose to starch (PNAS,110 (18): 7182-7187, 2013), in which the two sequential enzymes cellobiose phosphorylase (CBP) from Clostridium thermocellum and potato alpha-glucan phosphorylase (PGP) from Solanum tuberosum were the two key enzymes responsible for the whole conversion rate. In this work CBP and PGP were fused to form a large enzyme and it turned out that the fusion protein could exhibit a good bifunctionality when PGP moiety was put at the N-terminus and CBP moiety at the C-terminus (designated as PGP-CBP). Although the coupled reaction rate of PGP-CBP was decreased by 23.0% compared with the free enzymes, substrate channeling between the two active sites in PGP-CBP was formed, demonstrated by the introduction of the competing enzyme of PGP to the reaction system. The potential of PGP-CBP fusion enzyme being applied to the conversion of cellulose to amylose was discussed.


Asunto(s)
Celobiosa , Solanum tuberosum , Celobiosa/metabolismo , Celulosa/metabolismo , Glucosiltransferasas , Fosforilasas/química , Fosforilasas/genética , Solanum tuberosum/metabolismo , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA