Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Chem Ecol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958679

RESUMEN

Male orchid bees are unique in the animal kingdom for making perfumes that function as sex pheromone. Males collect volatile chemicals from the environment in the neotropical forests, including floral and non-floral sources, creating complex but species-specific blends. Male orchid bees exhibit several adaptations to facilitate perfume collection and storage. When collecting volatile compounds, males apply lipid substances that they secrete from cephalic labial glands onto the fragrant substrate. These lipids help dissolve and retain the volatiles, similar to the process of 'enfleurage' in the traditional perfume industry. We investigated how the chemical composition of acquired perfume and labial gland secretions varied across the phylogeny of orchid bees, including 65 species in five genera from Central and South America. Perfumes showed rapid evolution as revealed by low overall phylogenetic signal, in agreement with the idea that perfume compounds diverge rapidly and substantially among closely related species due to their role in species recognition. A possible exception were perfumes in the genus Eulaema, clustering closely in chemospace, partly mediated by high proportions of carvone and trans-carvone oxide. Labial gland secretions, in contrast, showed a strong phylogenetic signal at the genus level, with secretions of Eufriesea and Exaerete dominated by fatty acids and Eulaema dominated by saturated acetates of chain lengths 12 to 16 C-atoms. Secretions of the majority of Euglossa were heavily dominated by one unsaturated long chain diacetate, (9Z)-Eicosen-1,20-diyldiacetate. However, we also identified few highly divergent species of Euglossa in four subclades (11 species) that appear to have secondarily replaced the diacetate with other compounds. In comparison with environment-derived perfumes, the evolution of labial gland secretion is much slower, likely constrained by the underlying biochemical pathways, but perhaps influenced by perfume-solvent chemical interactions.

2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622789

RESUMEN

Many fundamental cellular and viral functions, including replication and translation, involve complex ensembles hosting synergistic activity between nucleic acids and proteins/peptides. There is ample evidence indicating that the chemical precursors of both nucleic acids and peptides could be efficiently formed in the prebiotic environment. Yet, studies on nonenzymatic replication, a central mechanism driving early chemical evolution, have focused largely on the activity of each class of these molecules separately. We show here that short nucleopeptide chimeras can replicate through autocatalytic and cross-catalytic processes, governed synergistically by the hybridization of the nucleobase motifs and the assembly propensity of the peptide segments. Unequal assembly-dependent replication induces clear selectivity toward the formation of a certain species within small networks of complementary nucleopeptides. The selectivity pattern may be influenced and indeed maximized to the point of almost extinction of the weakest replicator when the system is studied far from equilibrium and manipulated through changes in the physical (flow) and chemical (template and inhibition) conditions. We postulate that similar processes may have led to the emergence of the first functional nucleic-acid-peptide assemblies prior to the origin of life. Furthermore, spontaneous formation of related replicating complexes could potentially mark the initiation point for information transfer and rapid progression in complexity within primitive environments, which would have facilitated the development of a variety of functions found in extant biological assemblies.


Asunto(s)
Sustancias Macromoleculares/química , Ácidos Nucleicos/química , Péptidos/química , Catálisis , Fenómenos Químicos , Sustancias Macromoleculares/metabolismo , Ácidos Nucleicos/metabolismo , Péptidos/metabolismo
3.
Angew Chem Int Ed Engl ; : e202409746, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073275

RESUMEN

Non-natural building blocks (BBs) present a vast reservoir of chemical diversity for molecular recognition and drug discovery. However, leveraging evolutionary principles to efficiently generate bioactive molecules with a larger number of diverse BBs poses challenges within current laboratory evolution systems. Here, we introduce programmable chemical evolution (PCEvo) by integrating chemoinformatic classification and high-throughput array synthesis/screening. PCEvo initiates evolution by constructing a diversely combinatorial library to create ancestral molecules, streamlines the molecular evolution process and identifies high-affinity binders within 2-4 cycles. By employing PCEvo with 108 BBs and exploring >10^17 chemical space, we identify bicyclic peptidomimetic binders against targets SAR-CoV-2 RBD and Claudin18.2, achieving nanomolar affinity. Remarkably, Claudin18.2 binders selectively stain gastric adenocarcinoma cell lines and patient samples. PCEvo achieves expedited evolution in a few rounds, marking a significant advance in utilizing non-natural building blocks for rapid chemical evolution applicable to targets with or without prior structural information and ligand preference.

4.
Stud Hist Philos Sci ; 107: 54-63, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137534

RESUMEN

Evolution requires selection. Molecular/chemical/preDarwinian evolution is no exception. One molecule must be selected over another for molecular evolution to occur and advance. Evolution, however, has no goal. The laws of physics have no utilitarian desire, intent or proficiency. Laws and constraints are blind to "usefulness." How then were potential multi-step processes anticipated, valued and pursued by inanimate nature? Can orchestration of formal systems be physico-chemically spontaneous? The purely physico-dynamic self-ordering of Chaos Theory and irreversible non-equilibrium thermodynamic "engines of disequilibria conversion" achieve neither orchestration nor formal organization. Natural selection is a passive and after-the-fact-of-life selection. Darwinian selection reduces to the differential survival and reproduction of the fittest already-living organisms. In the case of abiogenesis, selection had to be 1) Active, 2) Pre-Function, and 3) Efficacious. Selection had to take place at the molecular level prior to the existence of non-trivial functional processes. It could not have been passive or secondary. What naturalistic mechanisms might have been at play?


Asunto(s)
Evolución Molecular , Selección Genética , Evolución Biológica , Termodinámica
5.
J Mol Evol ; 91(1): 60-75, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36576533

RESUMEN

Reduced oxidation state phosphorus compounds may have been brought to the early Earth via meteorites or could have formed through geologic processes. These compounds could have played a role in the origin of biological phosphorus (P, hereafter) compounds. Reduced oxidation state P compounds are generally more soluble in water and are more reactive than orthophosphate and its associated minerals. However, to date no facile routes to generate C-O-P type compounds using reduced oxidation state P compounds have been reported under prebiotic conditions. In this study, we investigate the reactions between reduced oxidation state P compounds-and their oxidized products generated via Fenton reactions-with the nucleosides uridine and adenosine. The inorganic P compounds generated via Fenton chemistry readily react with nucleosides to produce organophosphites and organophosphates, including phosphate diesters via one-pot syntheses. The reactions were facilitated by NH4+ ions and urea as a condensation agent. We also present the results of the plausible stability of the organic compounds such as adenosine in an environment containing an abundance of H2O2. Such results have direct implications on finding organic compounds in Martian environments and other rocky planets (including early Earth) that were richer in H2O2 than O2. Finally, we also suggest a route for the sink of these inorganic P compounds, as a part of a plausible natural P cycle and show the possible formation of secondary phosphate minerals such as struvite and brushite on the early Earth.


Asunto(s)
Marte , Compuestos Organofosforados , Compuestos Organofosforados/química , Medio Ambiente Extraterrestre , Peróxido de Hidrógeno , Minerales/química , Fosfatos/química , Nucleósidos , Adenosina
6.
Orig Life Evol Biosph ; 53(1-2): 113-125, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32749559

RESUMEN

Prebiotic processes required a reliable source of free energy and complex chemical mixtures that may have included sugars. The formose reaction is a potential source of those sugars. At moderate to elevated temperature and pH ranges, these sugars rapidly decay. Here it is shown that CaCO3-based chemical gardens catalyze the formose reaction to produce glucose, ribose, and other monosaccharides. These thin inorganic membranes are explored as analogs of hydrothermal vent materials-a possible place for the origin of life-and similarly exposed to very steep pH gradients. Supported by simulations of a simple reaction-diffusion model, this study shows that such gradients allow for the dynamic accumulation of sugars in specific layers of the thin membrane, effectively protecting formose sugar yields. Therefore, the formose reaction may be a plausible prebiotic reaction in alkaline hydrothermal vent environments, possibly setting the stage for an RNA world.


Asunto(s)
Respiraderos Hidrotermales , Carbohidratos , Ribosa , Catálisis
7.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(4): 103-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121737

RESUMEN

Molecular clouds (MCs) in space are the birthplace of various molecular species. Chemical reactions occurring on the cryogenic surfaces of cosmic icy dust grains have been considered to play important roles in the formation of these species. Radical reactions are crucial because they often have low barriers and thus proceed even at low temperatures such as ∼10 K. Since the 2000s, laboratory experiments conducted under low-temperature, high-vacuum conditions that mimic MC environments have revealed the elementary physicochemical processes on icy dust grains. In this review, experiments conducted by our group in this context are explored, with a focus on radical reactions on the surface of icy dust analogues, leading to the formation of astronomically abundant molecules such as H2, H2O, H2CO, and CH3OH and deuterium fractionation processes. The development of highly sensitive, non-destructive methods for detecting adsorbates and their utilization for clarifying the behavior of free radicals on ice, which contribute to the formation of complex organic molecules, are also described.


Asunto(s)
Polvo Cósmico , Medio Ambiente Extraterrestre , Polvo Cósmico/análisis , Hielo
8.
Angew Chem Int Ed Engl ; 62(48): e202310222, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37818743

RESUMEN

Monoterpene indole alkaloids (MIAs) are endowed with high structural and spatial complexity and characterized by diverse biological activities. Given this complexity-activity combination in MIAs, rapid and efficient access to chemical matter related to and with complexity similar to these alkaloids would be highly desirable, since such compound classes might display novel bioactivity. We describe the design and synthesis of a pseudo-natural product (pseudo-NP) collection obtained by the unprecedented combination of MIA fragments through complexity-generating transformations, resulting in arrangements not currently accessible by biosynthetic pathways. Cheminformatic analyses revealed that both the pseudo-NPs and the MIAs reside in a unique and common area of chemical space with high spatial complexity-density that is only sparsely populated by other natural products and drugs. Investigation of bioactivity guided by morphological profiling identified pseudo-NPs that inhibit DNA synthesis and modulate tubulin. These results demonstrate that the pseudo-NP collection occupies similar biologically relevant chemical space that Nature has endowed MIAs with.


Asunto(s)
Alcaloides , Monoterpenos , Alcaloides Indólicos
9.
Chemistry ; 28(67): e202202164, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083197

RESUMEN

Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.


Asunto(s)
Antineoplásicos , Productos Biológicos , Policétidos , Productos Biológicos/química , Proteínas Hedgehog/metabolismo , Vías Biosintéticas
10.
Orig Life Evol Biosph ; 52(4): 233-247, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36434362

RESUMEN

The adsorption of thymine, a key pyrimidine base of deoxyribonucleic acid (DNA) on montmorillonite clay (Mnt) exchanged with metal ions (Mnt-M2+, M2+ = Fe2+, Co2+, Cu2+, Ca2+, and Mg2+) over a range of concentration (7.0 × 10-5 M to 12.0 × 10-5 M) and pH (4.0 - 9.0) at ambient temperature has been investigated in aqueous environment spectrophotometrically (UV, FTIR, XRD, SEM-EDX). The effectiveness of various adsorbents was determined in terms of percent (%) binding and Langmuir constants (KL and Xm) using Langmuir adsorption isotherm at their respective pH of maximum adsorption. Transition metal ions incorporated Mnt, particularly Fe2+ have shown better adsorption ability than alkaline earth metal ions. The present study reveals the significant role of divalent metal cation exchanged Mnt clay in the chemical evolution of biomolecules of genetic continuity and self-replication which might have occurred through the adsorption of thymine on and between their silicate layers to protect and achieve biocompatibility.


Asunto(s)
Bentonita , Evolución Química , Arcilla/química , Bentonita/química , Adsorción , Timina , Prebióticos , Cationes/química , Cationes Bivalentes , Metales , Concentración de Iones de Hidrógeno , Cinética
11.
Proc Natl Acad Sci U S A ; 116(33): 16338-16346, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358633

RESUMEN

Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions. We compare the oligomerization of various cationic amino acids, including the cationic proteinaceous amino acids (lysine, Lys; arginine, Arg; and histidine, His), along with nonproteinaceous analogs of Lys harboring fewer methylene groups in their side chains. These analogs, which have been discussed as potential prebiotic alternatives to Lys, are ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid (Orn, Dab, and Dpr). We observe that the proteinaceous amino acids condense more extensively than these nonproteinaceous amino acids. Orn and Dab readily cyclize into lactams, while Dab and Dpr condense less efficiently. Furthermore, the proteinaceous amino acids exhibit more selective oligomerization through their α-amines relative to their side-chain groups. This selectivity results in predominantly linear depsipeptides in which the amino acids are α-amine-linked, analogous to today's proteins. These results suggest a chemical basis for the selection of Lys, Arg, and His over other cationic amino acids for incorporation into proto-proteins on the early Earth. Given that electrostatics are key elements of protein-RNA and protein-DNA interactions in extant life, we hypothesize that cationic side chains incorporated into proto-peptides, as reported in this study, served in a variety of functions with ancestral nucleic acid polymers in the early stages of life.


Asunto(s)
Aminoácidos/química , Origen de la Vida , Péptidos/química , Proteínas/química , Aminoácidos/genética , Aminobutiratos/química , Cationes/química , Proteínas de Unión al ADN/química , Depsipéptidos/química , Depsipéptidos/genética , Péptidos/genética , Proteínas/genética , Proteínas de Unión al ARN/química , Electricidad Estática , beta-Alanina/análogos & derivados , beta-Alanina/química
12.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500676

RESUMEN

It is generally recognized that the evolution of the early Earth was affected by an external energy source: radiation from the early Sun. The hypothesis about the important role of natural radioactivity, as a source of internal energy in the evolution of the early Earth, is considered and substantiated in this work. The decay of the long-lived isotopes 232Th, 238U, 235U, and 40K in the Global Ocean initiated the oxygenation of the hydro- and atmosphere, and the abiogenesis. The content of isotopes in the ocean and the kinetics of their decay, the values of the absorbed dose and dose rate, and the efficiency of sea water radiolysis, as a function of time, were calculated. The ocean served as both a "reservoir" that collected components of the early atmosphere and products of their transformations, and a "converter" in which further chemical reactions of these compounds took place. Radical mechanisms were proposed for the formation of simple amino acids, sugars, and nitrogen bases, i.e., the key structures of all living things, and also for the formation of oxygen. The calculation results confirm the possible important role of natural radioactivity in the evolution of terrestrial matter, and the emergence of life.


Asunto(s)
Planeta Tierra , Evolución Química , Atmósfera/química , Aminoácidos , Agua de Mar
13.
Orig Life Evol Biosph ; 51(2): 87-116, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34251577

RESUMEN

It has been proposed that clays could have served as key factors in promoting the increase in complexity of organic matter in primitive terrestrial and extraterrestrial environments. The aim of this work is to study the adsorption-desorption of two dicarboxylic acids, fumaric and succinic acids, onto clay minerals (sodium and iron montmorillonite). These two acids may have played a role in prebiotic chemistry, and in extant biochemistry, they constitute an important redox couple (e.g. in Krebs cycle) in extant biochemistry. Smectite clays might have played a key role in the origins of life. The effect of pH on sorption has been tested; the analysis was performed by UV-vis and FTIR-ATR spectroscopy, X-ray diffraction and X-ray fluorescence. The results show that chemisorption is the main responsible of the adsorption processes among the dicarboxylic acids and clays. The role of the ion, present in the clay, is fundamental in the adsorption processes of dicarboxylic acids. These ions (sodium and iron) were selected due to their relevance on the geochemical environments that possibly existed into the primitive Earth. Different mechanisms are proposed to explain the sorption of dicarboxylic acids in the clay. In this work, we propose the formation of complexes among metal cations in the clays and dicarboxylic acids. The organic complexes were probably formed in the prebiotic environments enabling chemical processes, prior to the appearance of life. Thus, the data presented here are relevant to the origin of life studies.


Asunto(s)
Bentonita , Succinatos , Adsorción , Silicatos de Aluminio , Cationes
14.
Acta Biotheor ; 70(1): 1, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34862917

RESUMEN

It is often assumed that the transition between chemical evolution and biological evolution undergoes a smooth process; that once life has arisen, it will automatically 'flood' a solar system body. However, there is no a priori reason to assume that a link between them is a given. The fact that both chemical evolution and biological evolution meet in a single point can be critical. Thus, one may ask: can a world's environment be favourable for chemical evolution but not for biological evolution, or vice versa? This is an important question worth exploration because certain worlds in the solar system in the past seemed to possess the possibility of chemical evolution, while several worlds in the present seem to exhibit such a possibility. Have such solar system bodies thus been, or are, 'flooded' by life? Did they possess the opportunity for biological evolution? The answer depends on the very nature of certain conditions under which evolution occurs, which may indicate that a link between chemical evolution and biological evolution is not automatically realised on a habitable solar system body. Thus, these conditions imply that in the emergence and distribution of cellular life, there exists an indeterminacy bottleneck at which chemical evolution and biological evolution meet through a single cell, whose descendants goes 'information explosive', 'entropy implosive' and 'habitat expansive', which determine whether life moves on to new environments. The consequence is that a world's environment can indeed be favourable for biological evolution, but not for chemical evolution. Thus, even if chemical evolution leads to the emergence of a microbial organism in a world, then it is not a given that such a first life form will be subjected to distribution to other environments; and not a given that its existence will continue in the environment it originated in. Thus, the bottleneck may be one of the decisive factors in the differences between habitable and inhabited worlds.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Animales
15.
Acta Biotheor ; 69(4): 745-767, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34283307

RESUMEN

Natural selection of specific protobiomonomers during abiogenic development of the prototype genetic code is hindered by the diversity of structural, spatial, and rotational isomers that have identical elemental composition and molecular mass (M), but can vary significantly in their physicochemical characteristics, such as the melting temperature Tm, the Tm:M ratio, and the solubility in water, due to different positions of atoms in the molecule. These parameters differ between cis- and trans-isomers of dicarboxylic acids, spatial monosaccharide isomers, and structural isomers of α-, ß-, and γ-amino acids. The stable planar heterocyclic molecules of the major nucleobases comprise four (C, H, N, O) or three (C, H, N) elements and contain a single -C=C bond and two nitrogen atoms in each heterocycle involved in C-N and C=N bonds. They exist as isomeric resonance hybrids of single and double bonds and as a mixture of tautomer forms due to the presence of -C=O and/or -NH2 side groups. They are thermostable, insoluble in water, and exhibit solid-state stability, which is of central importance for DNA molecules as carriers of genetic information. In M-Tm diagrams, proteinogenic amino acids and the corresponding codons are distributed fairly regularly relative to the distinct clusters of purine and pyrimidine bases, reflecting the correspondence between codons and amino acids that was established in different periods of genetic code development. The body of data on the evolution of the genetic code system indicates that the elemental composition and molecular structure of protobiomonomers, and their M, Tm, photostability, and aqueous solubility determined their selection in the emergence of the standard genetic code.


Asunto(s)
Evolución Molecular , Código Genético , Aminoácidos , Codón , Código Genético/genética , Selección Genética
16.
Angew Chem Int Ed Engl ; 60(24): 13294-13301, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33749121

RESUMEN

The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.


Asunto(s)
Proteasas Virales 3C/antagonistas & inhibidores , Antivirales/química , Enterovirus Humano D/enzimología , Evolución Química , Proteasas Virales 3C/metabolismo , Antivirales/metabolismo , Antivirales/farmacología , Biocatálisis , Carbono/química , Enterovirus Humano D/efectos de los fármacos , Humanos , Cinética , Termodinámica
17.
J Theor Biol ; 486: 110097, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31790680

RESUMEN

Chemical evolution is essential in understanding the origins of life. We present a theory for the evolution of molecule masses and show that small molecules grow by random diffusion and large molecules by a preferential attachment process leading eventually to life's molecules. It reproduces correctly the distribution of molecules found via mass spectroscopy for the Murchison meteorite and estimates the start of chemical evolution back to 12.8 billion years following the birth of stars and supernovae. From the Frontier mass between the random and preferential attachment dynamics the birth time of molecule families can be estimated. Amino acids emerge about 165 million years after chemical elements emerge in stars. Using the scaling of reaction rates with the distance of the molecules in space we recover correctly the few days emergence time of amino acids in the Miller-Urey experiment. The distribution of interstellar and extragalactic molecules are both consistent with the evolutionary mass distribution, and their age is estimated to 108 and 65 million years after the start of evolution. From the model, we can determine the number of different molecule compositions at the time of the emergence of Earth to be 1.6 million and the number of molecule compositions in interstellar space to a mere 719 species.


Asunto(s)
Evolución Química , Meteoroides , Aminoácidos , Humanos , Origen de la Vida
18.
Proc Natl Acad Sci U S A ; 114(37): E7652-E7659, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847940

RESUMEN

The rise of peptides with secondary structures and functions would have been a key step in the chemical evolution which led to life. As with modern biology, amino acid sequence would have been a primary determinant of peptide structure and activity in an origins-of-life scenario. It is a commonly held hypothesis that unique functional sequences would have emerged from a diverse soup of proto-peptides, yet there is a lack of experimental data in support of this. Whereas the majority of studies in the field focus on peptides containing only one or two types of amino acids, here we used modern mass spectrometry (MS)-based techniques to separate and sequence de novo proto-peptides containing broader combinations of prebiotically plausible monomers. Using a dry-wet environmental cycling protocol, hundreds of proto-peptide sequences were formed over a mere 4 d of reaction. Sequence homology diagrams were constructed to compare experimental and theoretical sequence spaces of tetrameric proto-peptides. MS-based analyses such as this will be increasingly necessary as origins-of-life researchers move toward systems-level investigations of prebiotic chemistry.


Asunto(s)
Depsipéptidos/química , Evolución Química , Origen de la Vida , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Aminoácidos/análisis , Depsipéptidos/síntesis química , Variación Genética/genética , Sustancias Macromoleculares , Espectrometría de Masas/métodos , Péptidos/química , Estructura Secundaria de Proteína
19.
Orig Life Evol Biosph ; 49(1-2): 77-88, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31222432

RESUMEN

A new definition of life is proposed and discussed in the present article. It is formulated by modifying and extending NASA's working definition of life, which postulates that life is a "self-sustaining chemical system capable of Darwinian evolution". The new definition includes a thermodynamical aspect of life as a far from equilibrium system and considers the flow of information from the environment to the living system. In our derivation of the definition of life we have assumed the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. The new proposed definition of life is independent of the mode of evolution, regardless of whether Lamarckian or Darwinian evolution operated at the origins of life and throughout evolutionary history. The new definition of life presented herein is formulated in a minimal manner and it is general enough that it does not distinguish between individual (metabolic) network and the collective (ecological) one. The newly proposed definition of life may be of interest for astrobiology, research into the origins of life or for efforts to produce synthetic or artificial life, and it furthermore may also have implications in the cognitive and computer sciences.


Asunto(s)
Evolución Biológica , Vida , Origen de la Vida , Termodinámica
20.
Angew Chem Int Ed Engl ; 58(18): 5872-5876, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30666757

RESUMEN

In diverse biological systems, the oxidation of tyrosine to melanin or dityrosine is crucial for the formation of crosslinked proteins and thus for the realization of their structural, biological, and photoactive functionalities; however, the predominant factor in determining the pathways of this chemical evolution has not been revealed. Herein, we demonstrate for tyrosine-containing amino acid derivatives, peptides, and proteins that the selective oxidation of tyrosine to produce melanin or dityrosine can be readily realized by manipulating the oxygen concentration in the reaction system. This oxygen-dependent pathway selection reflects the selective chemical evolution of tyrosine to dityrosine and melanin in anaerobic and aerobic microorganisms, respectively. The resulting melanin- and dityrosine-containing nanomaterials reproduce key functions of their natural counterparts with respect to their photothermal and photoluminescent characteristics, respectively. This work reveals the plausible role of oxygen in the chemical evolution of tyrosine derivatives and provides a versatile strategy for the rational design of tyrosine-based multifunctional biomaterials.


Asunto(s)
Melaninas/metabolismo , Oxígeno/metabolismo , Péptidos/química , Tirosina/metabolismo , Evolución Química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA