RESUMEN
BACKGROUND: Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS: The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS: This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.
Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Plaguicidas/farmacología , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/efectos de los fármacos , Simbiosis , ARN Ribosómico 16S/genética , Microbiota/efectos de los fármacos , Tetraciclina/farmacologíaRESUMEN
Plant-mediated interactions between herbivores play an important role in regulating the composition of herbivore community. The fall armyworm (FAW), Spodoptera frugiperda, which has become one of the most serious pests on corn in China since it invaded in 2018, has been found feeding rice in the field. However, how FAW interacts with native rice insect pests remains largely unknown. Here, we investigated the interaction between FAW and a resident herbivore, striped stem borer (SSB, Chilo suppressalis) on rice. The infestation of rice leaf sheaths (LSs) by SSB larvae systemically enhanced the level of jasmonic acid (JA), abscisic acid (ABA), and trypsin proteinase inhibitors (TPIs), reduced relative water content (RWC) in leaf blades (LBs), and suppressed the growth of FAW larvae. In contrast, because FAW larvae infested LBs and did not affect defence responses in LSs, they did not influence the performance of SSB larvae. Using different mutants, together with bioassays and chemical analysis, we revealed that SSB-induced suppression of FAW larvae growth depended on both the SSB-activated JA pathway and RWC in LBs, whereas the ABA pathway activated by SSB larvae promoted the growth of FAW larvae by impeding water loss. These results provide new insights into mechanisms underlying plant-mediated interactions between herbivores.
Asunto(s)
Ciclopentanos , Herbivoria , Larva , Oryza , Oxilipinas , Hojas de la Planta , Spodoptera , Agua , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Animales , Oryza/parasitología , Oryza/fisiología , Oryza/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/parasitología , Agua/metabolismo , Larva/fisiología , Spodoptera/fisiología , Ácido Abscísico/metabolismo , Mariposas Nocturnas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismoRESUMEN
Cadmium (Cd), a widely distributed environmental pollutant in agroecosystems, causes negative effects on crops and herbivores through bottom-up processes. The gut microbial community of an insect can play a critical role in response to metal stress. To understand how microbiota affect the stress responses of organisms to heavy metals in agroecosystems, we initially used 16S rRNA sequencing to characterize the larval gut microbiota of Chilo suppressalis, an important agricultural pest, exposed to a diet containing Cd. The species richness, diversity, and composition of the gut microbial community was then analyzed. Results revealed that while the richness (Chao1 and ACE) of gut microbiota in larvae exposed to Cd was not significantly affected, diversity (Shannon and Simpson) was reduced due to changes in species distribution and relative abundance. Overall, the most abundant genus was Enterococcus, while the abundance of the genera Micrococcaceae and Faecalibaculum in the control significantly superior to that in Cd-exposed pests. Phylogenetic investigation of microbial communities by the reconstruction of unobserved states (PICRUSt) showed that the intestinal microorganisms appear to participate in 34 pathways, especially those used in environmental information processing and the metabolism of the organism. This study suggests that the gut microbiota of C. suppressalis are significantly impacted by Cd exposure and highlights the importance of the gut microbiome in host stress responses and negative effects of Cd pollution in agroecosystems.
Asunto(s)
Microbioma Gastrointestinal , Larva , Metales Pesados , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Larva/efectos de los fármacos , Metales Pesados/toxicidad , Cadmio/toxicidad , ARN Ribosómico 16S , Mariposas Nocturnas/efectos de los fármacosRESUMEN
Chilo suppressalis, a critical rice stem borer pest, poses significant challenges to rice production due to its overlapping generations and irregular developmental duration. These characteristics complicate pest management strategies. According to the dynamic analysis of the overwintering adults of C. suppressalis in fields, it indicates that the phenomenon of irregular development of C. suppressalis exists widely and continuously. This study delves into the potential role of the Broad-Complex (Br-C) gene in the developmental duration of C. suppressalis. Four isoforms of Br-C, named CsBr-C Z1, CsBr-C Z2, CsBr-C Z4, and CsBr-C Z7, were identified. After CsBr-Cs RNAi, the duration of larva development spans extended obviously. And, the average developmental duration of dsCsBr-Cs feeding individuals increased obviously. Meanwhile, the average developmental duration of the dsCsBr-C Z2 feeding group was the longest among all the RNAi groups. After dsCsBr-Cs feeding continuously, individuals pupated at different instars changed obviously: the proportion of individuals pupated at the 5th instar decreased and pupated at the 7th instar or higher increased significantly. Moreover, the pupation rate of dsCsBr-Cs (except dsCsBr-C Z7) were significantly lower than that of dsGFP. The same results were obtained from the mutagenesis in CsBr-C genes mediated by CRISPR/Cas9. The average developmental duration of CsBr-Cs knockout individuals was significantly prolonged. And, the instar of pupation in knockout individuals was also delayed significantly. In conclusion, this work showed that CsBr-Cs played a crucial role in pupal commitment and affected the developmental duration of C. suppressalis significantly.
Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Interferencia de ARN , Animales , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Larva/crecimiento & desarrollo , Larva/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Oryza/parasitología , Oryza/crecimiento & desarrolloRESUMEN
The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.
Asunto(s)
Insecticidas , Mariposas Nocturnas , Oryza , Animales , Larva/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Pupa , Mariposas Nocturnas/metabolismo , Oryza/metabolismoRESUMEN
Herbivore-induced plant volatiles (HIPVs) are known to be perceived by neighboring plants, resulting in induction or priming of chemical defenses. There is little information on the defense responses that are triggered by these plant-plant interactions, and the phenomenon has rarely been studied in rice. Using chemical and molecular analyses in combination with insect behavioral and performance experiments, we studied how volatiles emitted by rice plants infested by the striped stemborer (SSB) Chilo suppressalis affect defenses against this pest in conspecific plants. Compared with rice plants exposed to the volatiles from uninfested plants, plants exposed to SSB-induced volatiles showed enhanced direct and indirect resistance to SSB. When subjected to caterpillar damage, the HIPV-exposed plants showed increased expression of jasmonic acid (JA) signaling genes, resulting in JA accumulation and higher levels of defensive proteinase inhibitors. Moreover, plants exposed to SSB-induced volatiles emitted larger amounts of inducible volatiles and were more attractive to the parasitoid Cotesia chilonis. By unraveling the factors involved in HIPV-mediated defense priming in rice, we reveal a key defensive role for proteinase inhibitors. These findings pave the way for novel rice management strategies to enhance the plant's resistance to one of its most devastating pests.
Asunto(s)
Mariposas Nocturnas , Oryza , Compuestos Orgánicos Volátiles , Animales , Oryza/genética , Plantas/metabolismo , Insectos/metabolismo , Herbivoria , Péptido Hidrolasas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Ciclopentanos/metabolismoRESUMEN
Heat shock factor 1 (HSF1) functions to maintain cellular and organismal homeostasis by regulating the expression of target genes, including those encoding heat shock proteins (HSPs). In the present study, the gene encoding HSF1 was cloned from the rice pest Chilo suppressalis, and designated Cshsf1. The deduced protein product, CsHSF1, contained conserved domains typical of the HSF1 family, including a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal transactivation domain. Real-time quantitative PCR showed that Cshsf1 was highly expressed in hemocytes. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsf1 was most highly expressed in male adults. RNAi-mediated silencing of Cshsf1 expression reduced C. suppressalis survival at high temperatures. To investigate the regulatory interactions between Cshsf1 and Cshsps, the promoters and expression patterns of 18 identified Cshsps in C. suppressalis were analysed; four types of heat shock elements (HSEs) were identified in promoter regions including canonical, tail-tail, head-head, and step/gap. The expression of Cshsp19.0, Cshsp21.7B, Cshsp60, Cshsp70 and Cshsp90 was positively regulated by Cshsf1; however, Cshsp22.8, Cshsp702, Cshsp705 and Cshsp706 gene expression was not altered. This study provides a foundation for future studies of HSF1 in insects during thermal stress.
Asunto(s)
Proteínas de Choque Térmico , Mariposas Nocturnas , Masculino , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Respuesta al Choque Térmico/genética , Regiones Promotoras Genéticas , Interferencia de ARNRESUMEN
Dicer is a highly conserved ribonuclease in evolution. It belongs to the RNase III family and can specifically recognize and cleave double-stranded RNA (dsRNA). In this study, the genome and transcriptome of Chilo suppressalis were analyzed, and it was found that there were two members in the Dicer family, named Dcr1 and Dcr2. The dsRNAs of Dcr1 and Dcr2 genes were synthesized and fed to C. suppressalis larvae. The C-factor of C. suppressalis was selected as the marker gene. The results showed that both Dcr1 and Dcr2 genes were significantly knocked down. The larval mortality was significantly reduced by 43.50% (p < 0.05) after feeding on dsC-factor and dsDcr1. The transcription levels of C-factor genes were significantly increased by 33.95% (p < 0.05) and 32.94% (p < 0.05) when the larvae fed with dsDcr2 + dsC-factor for 72 h and 96 h, respectively. Furthermore, the mortality was significantly decreased by 79% (p < 0.05) after feeding dsC-factor and dsDcr2. These findings imply that Dcr1 can decrease the lethal effect of C-factor gene but cannot affect its RNAi efficiency and Dcr2 can decrease the lethal effect of C-factor gene by inhibiting RNAi efficiency.
Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Larva/genética , Interferencia de ARN , ARN BicatenarioRESUMEN
The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.
Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Estrés Fisiológico/genética , Larva/genética , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Cry and Vip3 proteins are both pore-forming toxins produced by Bacillus thuringiensis that show synergistic insecticidal activity against different insect pests. However, the synergistic effect of Cry and Vip3 proteins on the midgut in target insects is still unclear. In this study, faster and more serious damage was observed after treatment with both Cry9A and Vip3A proteins in the Chilo suppressalis midgut compared to single-protein treatment. Through RNA sequencing, midgut transcriptomic comparison was performed between dual- and single-protein treatments according to midgut injury. After 6 h, 609 differentially expressed genes were found with the combined Cry9A and Vip3A treatments, which was much more than that in the single treatment, corresponding to faster and more serious damage. These genes were mainly enriched in similar pathways, such as lipid metabolic, oxidation-reduction and carbohydrate metabolic process, peptide secretion and cell-cell adhesion; however, the number and expression level of differentially expressed genes are increased. For specific genes significantly regulated by induction of Cry9A and Vip3A, lipases, phospholipid scramblase, probable tape measure protein and arylsulfatase J were significantly downregulated after 6 h treatment. In addition, regular genes related to the activation and receptor binding of B. thuringiensis toxins were differentially regulated, such as ATP-binding cassette subfamily G member 1 and serine protease. Validation with RT-qPCR showed agreement with the sequencing results. Overall, our results support that stronger and faster midgut responses at the cellular and transcriptional levels are induced by the synergistic toxicity of Cry9A and Vip3A in C. suppressalis.
Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Larva , Endotoxinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacología , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/metabolismoRESUMEN
Chilo suppressalis is one of the most damaging rice pests in China's rice-growing regions. Chemical pesticides are the primary method for pest control; the excessive use of insecticides has resulted in pesticide resistance. C. suppressalis is highly susceptible to cyproflanilide, a novel pesticide with high efficacy. However, the acute toxicity and detoxification mechanisms remain unclear. We carried out a bioassay experiment with C. suppressalis larvae and found that the LD10, LD30 and LD50 of cyproflanilide for 3rd instar larvae was 1.7 ng/per larvae, 6.62 ng/per larvae and 16.92 ng/per larvae, respectively. Moreover, our field trial results showed that cyproflanilide had a 91.24% control efficiency against C. suppressalis. We investigated the effect of cyproflanilide (LD30) treatment on the transcriptome profiles of C. suppressalis larvae and found that 483 genes were up-regulated and 305 genes were down-regulated in response to cyproflanilide exposure, with significantly higher CYP4G90 and CYP4AU10 expression in the treatment group. The RNA interference knockdown of CYP4G90 and CYP4AU10 increased mortality by 20% and 18%, respectively, compared to the control. Our results indicate that cyproflanilide has effective insecticidal toxicological activity, and that the CYP4G90 and CYP4AU10 genes are involved in detoxification metabolism. These findings provide an insight into the toxicological basis of cyproflanilide and the means to develop efficient resistance management tools for C. suppressalis.
Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Oryza , Plaguicidas , Animales , Plaguicidas/farmacología , Bacillus thuringiensis/genética , Transcriptoma , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente/genética , Proteínas Bacterianas/metabolismo , Mariposas Nocturnas/genética , Insecticidas/toxicidad , Insecticidas/metabolismo , Larva/genética , Oryza/genéticaRESUMEN
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.
Asunto(s)
Insecticidas , Mariposas Nocturnas , Oryza , Animales , Oryza/metabolismo , Mariposas Nocturnas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Insecticidas/metabolismoRESUMEN
Chilo suppressalis is one of the most prevalent and damaging rice pests, causing significant economic losses each year. Chemical control is currently the primary method of controlling C. suppressalis. However, the indiscriminate use of chemical insecticides increases pest resistance, pollutes the environment and poses a significant health threat to humans and livestock, highlighting the need to find safer, more pest-specific and more effective alternatives to pest control. Plant-mediated RNA interference (RNAi) is a promising agricultural pest control method that is highly pest-specific and has less of an impact on the environment. Using multi-sgRNAs/Cas9 technology to delete Fatty acyl-CoA reductase (FAR) of C. suppressalis in the G0 generation, we show that downregulating FAR transcription may significantly increase the mortality rate and darken the epidermis of C. suppressalis compared with the control. Subsequently, we developed dsFAR transgenic rice lines using Agrobacterium-mediated genetic transformation and then screened three strains expressing dsFAR at high levels using transcriptional level analysis. Using transgenic rice stems, a laboratory feeding bioassay indicated that at least one line (L#10) displayed a particularly high level of insect resistance, with an insect mortality rate of more than 80%. In the field trials, dsFAR transgenic rice displayed high levels of resistance to C. suppressalis damage. Collectively, these results suggest the potential of a new environment-friendly, species-specific strategy for rice pest management.
Asunto(s)
Oryza , Aldehído Oxidorreductasas , Oryza/genética , ARN de Planta , TransgenesRESUMEN
BACKGROUND: The nutritional signaling pathway regulates an insect's size, development, and lifespan, as well as playing a vital role in reproduction. The insulin/insulin-like growth factor signaling (IIS) pathway plays a key role in the nutrition signaling pathway. As an integral component of the IIS pathway, insulin receptor (InR), a receptor tyrosine kinase, plays a role in the insulin pathway by controlling reproduction in many insect species. However, the precise molecular function of InR in non-model insect reproduction is poorly understood. METHODS: In our study, Chilo suppressalis, a well-known rice pest, was used as a molecular system to determine the role of InR in insect reproduction. Sequencing the InR gene of C. suppressalis, comparing the amino acid sequence-specific structure, and constructing a phylogenetic tree revealed that this gene has four main domains: ligand binding L domain, Furin-like region, fibronectin type III domains, and Tyrosine kinase catalytic domain, which were all highly conserved in insects. RESULTS: By characterizing the spatiotemporal expression profile of InR in different developmental stages and tissues, we found that InR gene expression was highest on the 3-day old in female pupae, 6th instar larvae, and fat body on the 6-day old in female pupae. InR gene expression may promote the molting and pupation of larvae and play a role in reproduction in the fat body. Furthermore, the RNA interference knockdown of InR dramatically reduced yolk deposition and blocked oocyte maturation. After suppression of InR, the expression of several other genes fluctuated to varying degrees. CONCLUSION: In conclusion, InR is vital to reproduction and is expected to become a new target for pest management.
Asunto(s)
Insulinas , Mariposas Nocturnas , Animales , Interferencia de ARN , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Filogenia , Mariposas Nocturnas/genética , Larva/metabolismo , Insulinas/genética , Insulinas/metabolismoRESUMEN
The glutathione S-transferases (GSTs) are a kind of metabolic enzymes and participate in the detoxification metabolism of xenobiotics in various organisms. In insects, GSTs play important roles in the development of insecticide resistance and antioxidant protection. The rice stem borer Chilo suppressalis is one of the most damaging pests in rice and has developed high levels of resistance to abamectin in many areas of China, whereas the potential resistance mechanisms of C suppressalis to abamectin are still unclear. In the present study, a total of 23 CsGSTs genes were identified from the C. suppressalis transcriptome and genome, including 21 cytosolic and two microsomal CsGSTs. The cytosolic CsGSTs were further classified into seven categories based on phylogenetic analysis, and their sequence characteristics and genome structures were also analyzed. Synergism study revealed that the susceptibility of C. suppressalis to abamectin was increased significantly when the CsGSTs were inhibited by diethyl maleate (DEM). Sixteen CsGSTs genes were up-regulated in C. suppressalis larvae after treatment with abamectin, among which four CsGSTs genes including CsGSTe2, CsGSTe4, CsGSTo4 and CsGSTu1 were significantly induced in the midgut and fat body tissues. These results indicated that CsGSTs were associated with the detoxification of C. suppressalis to abamectin, and CsGSTe2, CsGSTe4, CsGSTo4 and CsGSTu1 might play important roles in the insecticide detoxification or antioxidant protection in C. suppressalis. Our present study provides valuable information on C. suppressalis GSTs, and are helpful in understanding the contributions of GSTs in abamectin detoxification in C. suppressalis and other insects.
Asunto(s)
Mariposas Nocturnas , Animales , Glutatión/metabolismo , Ivermectina/análogos & derivados , Mariposas Nocturnas/metabolismo , Filogenia , Transferasas/genética , Transferasas/metabolismoRESUMEN
Chilo suppressalis Walker (Lepidoptera: Crambidae) is one of the most destructive pests occurring in the rice-growing regions of Asia. Parasitoids, mainly egg parasitoids, have been of interest for several years even with practical used cases. Therefore, the potential impact of insecticides on natural enemies needs great attention. In this study, chlorantraniliprole was evaluated for its impact on C. suppressalis and two dominant parasitic wasps. Bioassays showed that chlorantraniliprole had negligible toxicity to Eriborus terebrans but was significantly toxic to Chelonus munakatae; the mortality exceeded 50% when the concentration reached 46.83 ng/cm2. Enzyme assays suggested that the significantly different carboxylesterase activity may be involved in the high-level detoxification metabolism of E. terebrans. According to the results of enzyme gene correlation analysis, P450s may be the dominant factor in the detoxification metabolism of C. munakatae. In addition, the ryanodine receptor C-terminus of C. suppressalis (CsRyR), C. munakatae (CmRyR) and E. terebrans (EtRyR) were successfully cloned. Different amino acids at resistance mutation I4758 M between susceptible C. suppressalis (I) and parasitic wasps (M) may be related to susceptibility differences. Simulated docking showed that CsRyR and CmRyR can interact with chlorantraniliprole but not EtRyR. More interaction forces were formed between CsRyR and chlorantraniliprole than CmRyR. Furthermore, a Pi-Pi T-shape formed between 73PHE in CsRyR and the benzene ring in chlorantraniliprole. These results indicated that both detoxification metabolism and the target site could mediate the susceptibility difference between C. suppressalis and its parasitic wasps.
Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Avispas , Animales , China , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , ortoaminobenzoatos/toxicidadRESUMEN
Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.
Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Oryza , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Larva/fisiología , Mariposas Nocturnas/metabolismo , Oryza/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismoRESUMEN
Survival and adaptation to seasonal changes are challenging for insects. Many temperate insects such as the rice stem borer (Chilo suppressalis) overcome the adverse situation by entering diapause, wherein development changes dynamically occur and metabolic activity is suppressed. The photoperiod and temperature act as major environmental stimuli of diapause. However, the physiological and molecular mechanisms that interpret the ecologically relevant environmental cues in ontogenetic development during diapause termination are poorly understood. Here, we used genome-wide high-throughput RNA-sequencing to examine the patterns of gene expression during diapause termination in C. suppressalis. Major shifts in biological processes and pathways including metabolism, environmental information transmission, and endocrine signalling were observed across diapause termination based on over-representation analysis, short time-series expression miner, and gene set enrichment analysis. Many new pathways were identified in diapause termination including circadian rhythm, MAPK signalling, Wnt signalling, and Ras signalling, together with previously reported pathways including ecdysteroid, juvenile hormone, and insulin/insulin-like signalling. Our results show that convergent biological processes and molecular pathways of diapause termination were shared across different insect species and provided a comprehensive roadmap to better understand diapause termination in C. suppressalis.
Asunto(s)
Diapausa , Insulinas , Mariposas Nocturnas , Animales , Fotoperiodo , Transcriptoma , Ecdisteroides , Temperatura , Mariposas Nocturnas/genética , Diapausa/genética , Insectos/genética , Hormonas Juveniles , ARN , Insulinas/genéticaRESUMEN
Chilo suppressalis Walker (Lepidoptera: Crambidae) is a widely destructive pest occurring in rice, particularly in the rice-growing regions of Asia. In recent years, C. suppressalis has developed resistance to several insecticides because of the extensive use of insecticides. The resistance levels to four insecticides were determined among populations from different regions of Sichuan Province, China, using a drop-method bioassay. Based on LC50 values of a laboratory susceptible strain, all field populations showed moderate level of resistance to triazophos (23.9- to 83.5-fold) and were either susceptible or had a low level of resistance to abamectin (2.1- to 5.8-fold). All field-collected populations had a low or moderate level of resistance to chlorpyrifos (1.7- to 47.1-fold) and monosultap (2.7- to 13.5-fold). The synergism experiment indicated that the resistance of the XW19 to triazophos may be associated with cytochrome P450 monooxygenases (P450s), with the highest synergistic ratio (SR) of 3.05-fold and increased ratio (IR) of 2.28-fold for piperonylbutoxide (PBO). The P450 activity of the TJ19 population was the greatest among the six field populations. Moreover, the relative expression levels of four resistance-related P450 genes were detected with qRT-PCR, and the results indicated that CYP324A12, CYP321F3 and CYP9A68 were overexpressed in the resistant population, especially in the XW19 population (by 1.2-, 3.4 -, and 18.0-fold, respectively). In addition, the relative expression levels of CYP9A68 among the CZ19 and TJ19 populations were also enhanced 10.5- and 24.9-fold, respectively. These results suggested that CYP324A12, CYP321F3 and CYP9A68 may be related to the resistance development of C. suppressalis to triazophos.
Asunto(s)
Cloropirifos , Insecticidas , Lepidópteros , Mariposas Nocturnas , Oryza , Animales , China , Cloropirifos/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mariposas Nocturnas/genética , Oryza/genéticaRESUMEN
RNA interference (RNAi) has gained attention in recent years as a viable pest control strategy. Here, RNAi assays were performed to screen the potential functionality of genes in Chilo suppressalis, a serious pest of rice, and to determine their potential for developing a highly targeted molecular control approach. Potential homologs of NADH dehydrogenase (ND), glycerol 3-phosphate dehydrogenase (GPDH) and male specific lethal 3 (MSL3) were cloned from C. suppressalis, and their spatiotemporal gene expression evaluated. The expression of all three genes was higher in the pupal and adult stages than the larval stages and largely higher in the larval head compared to other tissues. Newly hatched larvae exhibited high mortalities and suppressed growth when fed bacteria producing double-stranded RNAs (dsRNAs) corresponding to the three target genes. This study provides insights into the function of ND, GPDH and MSL3 during C. suppressalis larval development and suggests that all may be candidate gene targets for C. suppressalis pest management.