Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2321994, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38377136

RESUMEN

Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Cricetinae , Humanos , Ratones , Ratas , Animales , Vacunas Combinadas , SARS-CoV-2/genética , Vacunas de ARNm , Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Anticuerpos ampliamente neutralizantes , Ratones Endogámicos BALB C , ARN Mensajero/genética
2.
Sci Bull (Beijing) ; 68(24): 3192-3206, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37993332

RESUMEN

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the wild-type, B.1.1.7, B.1.351, B.1.617.2, and the newly emerging Omicron variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. Furthermore, our safety assessment of RQ3013 in NHP showed no observable adverse effects. These results provide strong support for the evaluation of RQ3013 in clinical trials and suggest that it may be a promising candidate for broad protection against COVID-19 and its variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas de ARNm , Animales , Cricetinae , Ratones , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas de ARNm/inmunología , SARS-CoV-2/genética , Primates , Inmunogenicidad Vacunal , Anticuerpos ampliamente neutralizantes , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA