Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Fish Shellfish Immunol ; 149: 109578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670413

RESUMEN

MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Regulación de la Expresión Génica , Inmunidad Innata , MicroARNs , Vibriosis , Vibrio , Animales , MicroARNs/genética , MicroARNs/inmunología , Peces Planos/inmunología , Peces Planos/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Vibrio/fisiología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Inflamación/inmunología , Inflamación/veterinaria , Inflamación/genética , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo
2.
Fish Shellfish Immunol ; 142: 109119, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774902

RESUMEN

The Chinese tongue sole (Cynoglossus semilaevis) holds significant economic importance within the fishing industry along the eastern coasts of China. In recent years, the frequent outbreaks of bacterial diseases have become a common concern as the aquaculture scale expands. The majority of the diseased fish exhibit symptoms such as skin congestion, damage and skin ulceration. As the skin serves as the first line of defense against bacterial infections, establishing a skin cell line for immunological research on Chinese tongue sole's response to bacterial infection is of utmost importance. In this study, a cell line named CSS (derived from the skin of the Chinese tongue sole) was successfully established. The cells have demonstrated stability during passages and exhibit a multipolar fibroblast-like morphology. They were cultured in L-15 medium with 20% serum and have been successfully passed through 60 passages over a period of 20 months. The identification of the mitochondrial CO1 gene confirmed that the cell originated from Chinese tongue sole. The karyotype detection revealed that the cell had a chromosome number of 2n = 42. After being stored in liquid nitrogen for 15 months, the cells can maintain more than 75% viability upon recovery. After transfecting with cy3-labeled scramble siRNA and pEGFP-N3 plasmid, clear fluorescence was observed in the transfected cells. We observed that lipopolysaccharide (LPS) from Escherichia coli significantly upregulate the gene expression of various immune-related pathways at 2 h in the CSS cell line. Additionally, the differentially expressed genes showed a higher enrichment in immune-related pathways at 2 and 6 h after stimulation compared to the 24 h point. Moreover, we identified 347 genes that exhibited a gradual increase in expression during the 0-24 h stimulation period. These genes were primarily enriched in pathways related to Autophagy, GABAergic synapse, Apelin signaling and Ferroptosis. In general, the CSS cell line established in this study exhibits stable growth and can serve as a valuable tool for in vitro studies of immunology and other basic biologies of Chinese tongue sole.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Lenguado , Animales , Transcriptoma , Lipopolisacáridos/farmacología , Línea Celular , Cariotipo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955739

RESUMEN

Maternal effector genes (MEGs) encode maternal RNA and protein, accumulating in the cytoplasm of oocytes. During oocyte development, MEGs participate in oocyte meiosis and promote oocyte development. And MEGs can also regulate maternal transcriptome stability and promote maternal-zygotic transition (MTZ) in early embryonic development. Long noncoding RNAs (lncRNAs), as new epigenetic regulators, can regulate gene expression at both the transcriptional and post-transcriptional levels through cis- or trans-regulation. The oogenesis-related gene org is a germ-cell-specific gene in fish, but the role of org in embryonic development and oogenesis has rarely been studied, and the knowledge of the lncRNA-mediated regulation of org is limited. In this study, we cloned and identified the org gene of Chinese tongue sole (Cynoglossus semilaevis), and we identified a lncRNA named lncRNA ORG-anti-sequence (ORG-AS), located at the reverse overlapping region of org. The results of qRT-PCR and FISH demonstrated that org was highly expressed during the early stages of embryonic development and oogenesis and was located in the cytoplasm of oocytes. ORG-AS was expressed at low levels in the ovary and colocalized with org in the cytoplasm of oocytes. In vitro experiments showed that overexpression of ORG-AS inhibited org expression. These results suggest that org, as a MEG in C. semilaevis, participates in the MTZ and the oogenesis. The lncRNA ORG-AS negatively regulates the gene expression of org through trans-regulation. These new findings broaden the function of MEGs in embryonic development and the oogenesis of bony fish and prove that lncRNAs are important molecular factors regulating org.


Asunto(s)
Peces Planos , Lenguado , ARN Largo no Codificante , Secuencia de Aminoácidos , Animales , Clonación Molecular , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/genética , Peces Planos/metabolismo , Lenguado/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Fish Physiol Biochem ; 48(5): 1365-1375, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36125598

RESUMEN

The phenomenon of sexual size dimorphism (SSD), existing in mammals, birds, reptiles, spiders, amphibians, insects, and fishes, is generally related to feeding efficiency, energy allocation, sex steroids, and somatotropic and reproductive endocrine axes. Recently, positive and negative regulations of sex steroids have been reported on SSD in various species. Chinese tongue soles (Cynoglossus semilaevis) at 4 months were fed with 17ß-estradiol (E2) and testosterone (T) supplemented feeds for 8 months to assess the effect of sex steroids on growth traits in different sexes. The potential genetic regulation was examined using several growth-related genes. The results showed that two sex steroid hormones had inhibitory effects on the growth performance of different sexes of C. semilaevis. At the age of 8 months, the expression of insulin-like growth factor 2 gene (igf2), 24-dehydrocholesterol reductase (dhcr24), leptin, and estrogen receptor 2 (esr2) in the liver showed an overall downward trend. The expression of insulin-like growth factor 1 (igf1) was reduced, while thyroid hormone receptor-associated protein 3 (thrap3) expression tended to increase in the gonad after T and E2 treatments. In the brain, somatostatin 1, tandem duplicate 2 (sst1.2) expression increased with the treatment of T and E2 (P < 0.05), while growth hormone-releasing hormone (ghrh) expression decreased. E2 and T had different effects on growth differentiation factor 8 (gdf8) and insulin-like growth factor-binding protein 7 (igfbp7) expression in the muscle. Expression of gdf8 increased in the treated fishes in contrast to the reduction expression of igfbp7. This study provided important clues for understanding the role of sex steroids in flatfish SSD.


Asunto(s)
Peces Planos , Lenguado , Animales , Estradiol/metabolismo , Testosterona/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Leptina/metabolismo , Miostatina/metabolismo , Receptor beta de Estrógeno/metabolismo , Desmosterol/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Lenguado/metabolismo , Hormona Liberadora de Hormona del Crecimiento , Peces/metabolismo , Lengua/metabolismo , Somatostatina , Receptores de Hormona Tiroidea , Oxidorreductasas/metabolismo , Peces Planos/genética , Mamíferos/metabolismo
5.
Fish Physiol Biochem ; 46(3): 881-890, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31909442

RESUMEN

The Chinese tongue sole (Cynoglossus semilaevis) is a flatfish with distinctive asymmetry in its body coloration. The melanism (hyperpigmentation) in both the blind side and ocular side of C. semilaevis gives it an extremely low commercial value. However, the fundamental molecular mechanism of this melanism remains unclear. Melanocortin 1 receptor (MC1R), a GTP-binding protein-coupled receptor, is considered to play a vital role in the physiology of the vertebrate pigment system. In order to confirm the contribution of MC1R to the body coloration of C. semilaevis, the expression levels of Mc1r mRNA were measured in seven tissue types at different developmental stages of normal and melanistic C. semilaevis. The expression levels of Mc1r mRNA in the heart, brain, liver, kidney, ocular-side skin, and blind-side skin of melanistic C. semilaevis were significantly higher than that of normal C. semilaevis in all developmental stages. Moreover, the knocking down of Mc1r in the C. semilaevis liver cell line (HTLC) increased the expression of the downstream genes microphthalmia transcription factor (Mitf) and tyrosinase-related protein 1 (Tyrp1) in the pigmentation pathway. Thus, the present data suggest that MC1R might play important roles in Tyrp1- and Mitf-mediated pigment synthesis in C. semilaevis.


Asunto(s)
Proteínas de Peces/genética , Peces Planos/genética , Receptor de Melanocortina Tipo 1/genética , Animales , Encéfalo/metabolismo , Línea Celular , Riñón/metabolismo , Hígado/metabolismo , Melaninas , Glicoproteínas de Membrana/genética , Factor de Transcripción Asociado a Microftalmía/genética , Músculos/metabolismo , Miocardio/metabolismo , Oxidorreductasas/genética , Pigmentación , Piel/metabolismo
6.
Fish Shellfish Immunol ; 84: 962-969, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30399402

RESUMEN

STAT plays important roles in innate immunity during JAK/STAT signaling pathway, and STAT5 is particularly focused due to the existence of duplicated forms in fish and mammal. In Chinese tongue sole, stat5bl was suggested to be a candidate related to Vibrio harveyi resistance based on previous QTL screening. In this study, the full length of stat5bl cDNA was cloned and its expression patterns were analyzed. stat5bl was predominantly expressed in immune tissues, where the highest level was observed in liver, followed by skin and gill. Time course expression patterns were examined in six tissues (liver, skin, gill, kidney, intestine, spleen) after V. harveyi infection. stat5bl could be up-regulated by V. harveyi infection in all tissues except liver, despite the timepoints of peak were different. In contrast, stat5bl was significantly downregulated in liver. To elucidate the role of stat5bl in liver, in vitro RNAi were performed using primary liver cell culture. Knockdown of stat5bl could regulate the expression of genes closely related to JAK/STAT pathway. This study would enlarge our understanding of stat5bl in fish immunity.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia , Factor de Transcripción STAT5/química , Alineación de Secuencia/veterinaria , Vibrio , Vibriosis
7.
Funct Integr Genomics ; 18(3): 327-339, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29532338

RESUMEN

The Chinese tongue sole (Cynoglossus semilaevis) is a typical female heterogamete species that exhibits female-biased sexual size dimorphism, which has severely hindered the sustainable development of the species in aquaculture. In the present study, four important somatotropic and reproductive tissues including brain, pituitary, liver, and gonad from 15 females and 15 males were used for transcriptome analysis via RNA-seq. A mean of 37,533,991 high-quality clean reads was obtained from each library and 806, 1482, 818, and 14,695 differentially expressed genes in female and male were identified from the brain, pituitary, liver, and gonad, respectively (fold change ≥ 2 and q < 0.05). Enrichment analyses of GO terms and KEGG pathways showed that nucleic acid-binding transcription factor activity, G-protein-coupled receptor activity, MAPK signaling pathway, steroid biosynthesis, and neuroactive ligand-receptor interaction may be involved in the sexual growth differences. Furthermore, via weighted gene co-expression network analyses, two modules (yellowgreen and salmon4) were identified to be significantly positive-correlated with female-biased sexual size dimorphism. An illustrated network map drawn by these two modules enabled the identification of a series of hub genes, including nipped-B-like protein A (nipbla), transcriptional activator protein Pur-beta-like (purb), and BDNF/NT-3 growth factors receptor (ntrk2). Detailed functional investigation of these networks and hub genes will further improve our understanding of the underlying molecular mechanism of sexual size dimorphism in fish.


Asunto(s)
Tamaño Corporal/genética , Peces/genética , Redes Reguladoras de Genes , Caracteres Sexuales , Transcriptoma , Animales , Femenino , Peces/crecimiento & desarrollo , Masculino
8.
Fish Shellfish Immunol ; 77: 392-401, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29635065

RESUMEN

In mammals, microtubule-dependent trafficking could participate the immune response, where the motor proteins are suggested to play an important role in this process, while the related study in fish was rare. In this study, dctn5, a subunit of dyactin complex for docking motor protein, was obtained by previous immune QTL screening. The full-length cDNAs of two dctn5 transcript variants were cloned and identified (named dctn5_tv1 and dctn5_tv2, respectively). Tissue distribution showed that dctn5_tv1 was widely distributed and high transcription was observed in immune tissue (skin), while dctn5_tv2 was predominantly detected in gonad and very low in other tissues. Time-course expression analysis revealed that dctn5_tv1 could be up-regulated in gill, intestine, skin, spleen, and kidney after Vibrio harveyi challenge. Moreover, recombinant Dctn5_tv1 exhibited high antimicrobial activity against Escherichia coli and Streptococcus agalactiae due to binding to bacteria cells. Taken together, these data suggest Dctn5_tv1 is involved in immune response of bacterial invasion in Chinese tongue sole.


Asunto(s)
Complejo Dinactina/genética , Complejo Dinactina/inmunología , Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Complejo Dinactina/química , Escherichia coli/fisiología , Infecciones por Escherichia coli/inmunología , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia , Alineación de Secuencia/veterinaria , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/fisiología , Vibrio/fisiología , Vibriosis/inmunología
9.
Fish Shellfish Immunol ; 72: 436-442, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29154943

RESUMEN

Numerous studies suggest R-spondins (Rspos) plays a role in mammalian sex development and differentiation by activating WNT signaling pathways. However, Rspos are frequently less reported in teleosts. In this study, a molecular characterization and expression analysis was conducted with a new rspondin member in the Chinese tongue sole, rspondin2-like (rspo2l). The length of rspo2l cDNA is 1251 bp with 732 bp of coding sequence. A qRT-PCR analysis revealed that the transcription of rspo2l was distributed in various tissues, with high transcription levels in the liver, skin, and gills which might indicate a possible role in immunity. We next examined a time-course of transcription levels in four immune tissues (gill, liver, spleen, and kidney) after Vibrio harveyi challenge. It was found that rspo2l was up-regulated in the gills, spleen, and kidney and down-regulated in the liver, and the greatest responses occurred at 24 and 48 h after bacterial challenge. An assessment of ß-catenin, the key regulator of the canonical WNT signaling pathway, at different time points in four immune organs revealed that its transcription profile was similar to that of rspo2l after bacterial challenge. The results suggest that tongue sole rspo2l might play a role in immune responses after bacterial challenge, while the potential link with the WNT signaling pathway still requires further investigation. This is the first report about the involvement of rspondins in fish immune responses.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica , Filogenia , Alineación de Secuencia/veterinaria , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/veterinaria
10.
Fish Physiol Biochem ; 43(5): 1289-1298, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741124

RESUMEN

As an important economic marine species cultured in China, Chinese tongue sole (Cynoglossus semilaevis) has interested us due to its sexual dimorphism and ZW/ZZ sex determination system. In a previous study, dmrt1 was identified as a dosage-dependent male-determining gene. In the present study, a female-specific expressed gene, cse0440, initially annotated as lrp1b-like, was identified from chromosome W of C. semilaevis. In view of the differences between cse0440 and lrp1b in terms of expression pattern, a phylogenetic analysis containing 85 LRP proteins was constructed and provided an evidence to re-annotate cse0440 as cseLRP13. In addition, two orthologues of cseLRP13 were separately identified from W and Z chromosomes: cseLRP13-W and cseLRP13-Z. The subsequent multiple sequence alignment and syntenic arrangements of LRP13 in C. semilaevis, Japanese medaka (Oryzias latipes), large yellow croaker (Larimichthys crocea), striped bass (Morone saxatilis), white perch (Morone americana) and Fugu rubripes (Takifugu rubripes) further supported this re-annotation. RT-PCR and in situ hybridization revealed that cselrp13 was exclusively expressed in the oocytes and follicles of ovaries. These results suggested that lrp13 may play important roles in female reproduction. In future, with the advancement of micromanipulation in flatfish, the detailed function of two lrp13 orthologues in C. semilaevis will be elucidated.


Asunto(s)
Peces Planos/metabolismo , Oryzias/metabolismo , Receptores de LDL/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Peces Planos/genética , Regulación de la Expresión Génica/fisiología , Oryzias/genética , Filogenia , Receptores de LDL/genética , Especificidad de la Especie
11.
Gene ; 901: 148199, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38253299

RESUMEN

SET (SuVar3-9, Enhancer of Zeste, Trithorax) domain bifurcated histone lysine methyltransferase 1, setdb1, is the predominant histone lysine methyltransferase catalyzing H3K9me3. Prior studies have illustrated that setdb1 and H3K9me3 critically regulate sex differentiation and gametogenesis. However, the molecular details by which setdb1 is involved in these processes in fish have been poorly reported. Here, we cloned and characterized the setdb1 ORF (open reading frame) sequence from Chinese tongue sole (Cynoglossus semilaevis). The setdb1 ORF sequence was 3,669 bp, encoding a 1,222-amino-acid protein. Phylogenetic analysis showed that setdb1 was structurally conserved. qRT-PCR revealed that setdb1 had a high expression level in the testes at 12 mpf (months post fertilization). Single-cell RNA-seq data at 24 mpf indicated that setdb1 was generally expressed in spermatogenic cells at each stage except for sperm and was centrally expressed in oogonia. H3K9me3 modification was observed in gonads with the immunofluorescence technique. Furthermore, the overexpression experiment suggested that sox5 was a candidate target of setdb1. sox5 was abundantly expressed in male and pseudomale gonads at 24 mpf. Single-cell RNA-seq data showed that sox5 was mainly expressed in spermatogonia and its expression gradually declined with differentiation. Taken together, our findings imply that setdb1 regulates sox5 transcription in gonads, which provides molecular clues into histone modification-mediated orchestration of sex differentiation and gametogenesis.


Asunto(s)
Proteínas de Peces , Lenguado , Código de Histonas , N-Metiltransferasa de Histona-Lisina , Factores de Transcripción SOXD , Animales , Masculino , Lenguado/genética , Gónadas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Filogenia , Semen/metabolismo , Factores de Transcripción SOXD/metabolismo , Proteínas de Peces/metabolismo
12.
Int J Biol Macromol ; 253(Pt 5): 127201, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793513

RESUMEN

Sexual size dimorphism (SSD) characterized by different body size between females and males have been reported in various animals. Gonadectomy experiments have implied important regulatory roles of the gonad in SSD. Among multiple factors from the gonad, TGF-ß superfamily (especially BMP/GDF family) attracted our interest due to its pleiotropy in growth and reproduction regulations. Thus, whether BMP/GDF family members serve as crucial regulators for SSD was studied in a typically female-biased SSD flatfish named Chinese tongue sole (Cynoglossus semilaevis). Firstly, a total of 26 BMP/GDF family members were identified. The PPI network analysis showed that they may interact with ACVR2a, ACVR2b, ACVR1, BMPR2, SMAD3, BMPR1a, and other proteins. Subsequently, DAP-seq was employed to reveal the binding sites for yin yang 1 (yy1), a transcription factor involved in gonad function and cell growth partly by regulating TGF-ß superfamily. The results revealed that two yy1 homologues yy1a and yy1b in C. semilaevis could regulate Hippo signaling pathway, mTOR signaling pathway, and AMPK signaling pathway. Moreover, BMP/GDF family genes including bmp2, bmp4, bmp5, gdf6a, and gdf6b were important components of Hippo pathway. In future, the crosstalk among yy1a, yy1b, and TGF-ß family would provide more insight into sexual size dimorphism in C. semilaevis.


Asunto(s)
Peces Planos , Caracteres Sexuales , Masculino , Animales , Femenino , Peces Planos/genética , Regulación de la Expresión Génica , Genoma , Proteínas Morfogenéticas Óseas/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
13.
Gene ; 853: 147089, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36470484

RESUMEN

The typical sexual size dimorphism (SSD) phenomenon of Chinese tongue sole (Cynoglossus semilaevis) seriously restricts the sustainable development of the fishing industry. Previous transcriptome analysis has found a close relationship between the steroid biosynthesis and C. semilaevis SSD. The 7-dehydrocholesterol reductase (dhcr7) and lathosterol 5-desaturase (sc5d) are two genes in the steroid biosynthesis pathway, playing important roles in lipid synthesis, cellular metabolism, and growth. The present study assessed their roles in the mechanism of C. semilaevis SSD. The quantitative polymerase chain reaction (qPCR) results showed that C. semilaevis dhcr7 was mainly expressed in female livers, and C. semilaevis sc5d was highly expressed in female livers and gonads. Dual-luciferase experiment showed that dhcr7 and sc5d promoters had strong transcriptional activity. The transcription factors E2F transcription factor 1 (E2F1), and CCAAT enhancer binding protein alpha (C/EBPα) significantly regulated the transcriptional activity of dhcr7 and sc5d promoters, respectively. Furthermore, small interfering RNA (siRNA) knockdown results showed that expression levels of several genes [SREBF chaperone (scap), membrane-bound transcription factor peptidase, site 1 (mbtps1), fatty acid synthase (fasn), sonic hedgehog (shh), bone morphogenetic protein 2b (bmp2b) and AKT serine/threonine kinase 1 (akt1)] were suppressed. Protein subcellular localization results indicated that Dhcr7 and Sc5d were both specifically distributed in the cytoplasm, with co-localization been observed. The present study provides evidence that dhcr7 and sc5d might regulate C. semilaevis sexual size dimorphism by involving in energy homeostasis and cell cycle, or by affecting PI3K-Akt and Shh signaling pathways. The detailed roles of these steroid biosynthesis genes regulating C. semilaevis SSD needed more information.


Asunto(s)
Peces Planos , Proteínas Hedgehog , Femenino , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Caracteres Sexuales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Oxidorreductasas/genética , Peces/metabolismo , Esteroides/metabolismo , Peces Planos/genética , Peces Planos/metabolismo
14.
Biology (Basel) ; 11(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36290355

RESUMEN

Sexual size dimorphism (SSD), which is the sexual differences in body size, has been widely reported in various species including fishes. For Chinese tongue sole (Cynoglossus semilaevis), a flatfish exhibiting typically female-biased SSD, little is known for its epigenetic regulation mechanism, especially the role of circRNAs. Here, we identified the differently expressed abundances of circRNAs in females, males, and pseudo-males to explore the potential functions of circRNAs in Chinese tongue sole SSD. In total, 14,745 novel circRNAs were screened, among which 1461 DE circRNAs were identified from the brain, gonad, liver, and muscle in female, male, and pseudo-male individuals. The ceRNA network was subsequently constructed, including 10 circRNAs, 26 mRNAs, and 11 miRNAs. These DE mRNAs were mainly related to the mRNA surveillance pathway, metabolic pathways, and cellular senescence. Importantly, the ceRNA network has revealed that several circRNAs such as novel_circ_004374 and novel_circ_014597 may regulate homeodomain interacting protein kinase 2 (hipk2) expression by sponging miR-130-x. It is also worth exploring whether or how novel_circ_008696 regulates SET Domain Containing 2, histone lysine methyltransferase (setd2), which in turn affects the epigenetic patterns of different sexual individuals. The present study not only enriches the knowledge on the potential roles of circRNA in the physiological process, but also provides new clues for the explanation of fish SSD. In future studies, the precise function and involvement of circRNAs in female-biased SSD will require more efforts.

15.
Animals (Basel) ; 12(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35565570

RESUMEN

Pathogenic infection of fishes is an important constraining factor affecting marine aquaculture. Insufficient understanding of the molecular mechanisms has affected the diagnosis and corresponding treatment. Here, we reported the dynamic changes of gene expression patterns in the Chinese tongue sole kidney at 16 h, 48 h, 72 h and 96 h after Vibrio harveyi infection. In total, 366, 214, 115 and 238 differentially expressed genes were obtained from the 16 h-vs. -C, 48 h-vs. -C, 72 h-vs. -C and 96 h-vs. -C group comparisons, respectively. KEGG enrichment analysis revealed rapid up-regulation of several immune-related pathways, including IL-17, TNF and TLR signaling pathway. More importantly, time-series analyses of transcriptome showed that immune genes were specifically up-regulated in a short period of time and then decreased. The expression levels of chemokines increased after infection and reached a peak at 16 h. Specifically, Jak-STAT signaling pathway played a crucial role in the regulation during Vibrio harveyi infection. In the later stages of infection, genes in the neuroendocrine pathway, such as glucocorticoid-related genes, were activated in the kidney, indicating a close connection between the immune system and neuroendocrine system. Our dynamic transcriptome analyses provided profound insight into the gene expression profile and investigation of immunogenetic mechanisms of Chinese tongue sole.

16.
Animals (Basel) ; 12(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36230393

RESUMEN

As an RA-metabolizing enzyme, cyp26b1 has a substantial impact on RA-signaling pathways. The cyp26b1 gene from the Chinese tongue sole was cloned and identified in this investigation. The cyp26b1 ORF was 1536 bp in length and encoded a 512 amino acid protein. A quantitative real-time PCR (qPCR) indicated that the cyp26b1 expression is no significant sexual dimorphism in the gonads at the 80 days post-hatching (dph) stages. After 4 months post-hatching (mph), the expression of cyp26b1 showed sexual dimorphism and lower level of expression in the ovaries than in the testes. An in situ hybridization demonstrated that cyp26b1 mRNA was primarily located in the testis. Interestingly, the cyp26b1 mRNA probe was also detected in the ovaries. These results suggested that cyp26b1 participates in the sex-differentiation and gonadal development of the Chinese tongue sole.

17.
Front Cell Dev Biol ; 10: 828124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300429

RESUMEN

Oogenesis is a highly orchestrated process that depends on regulation by autocrine/paracrine hormones and growth factors. However, many details of the molecular mechanisms that regulate fish oogenesis remain elusive. Here, we performed a single-cell RNA sequencing (scRNA-seq) analysis of the molecular signatures of distinct ovarian cell categories in adult Chinese tongue sole (Cynoglossus semilaevis). We characterized the successive stepwise development of three germ cell subtypes. Notably, we identified the cellular composition of fish follicle walls, including four granulosa cell types and one theca cell type, and we proposed important transcription factors (TFs) showing high activity in the regulation of cell identity. Moreover, we found that the extensive niche-germline bidirectional communications regulate fish oogenesis, whereas ovulation in fish is accompanied by the coordination of simultaneous and tightly sequential processes across different granulosa cells. Additionally, a systems biology analysis of the homologous genes shared by Chinese tongue sole and macaques revealed remarkably conserved biological processes in germ cells and granulosa cells across vertebrates. Our results provide key insights into the cell-type-specific mechanisms underlying fish oogenesis at a single-cell resolution, which offers important clues for exploring fish breeding mechanisms and the evolution of vertebrate reproductive systems.

18.
Artículo en Inglés | MEDLINE | ID: mdl-34763077

RESUMEN

MicroRNAs (miRNAs) contribute to gonadal development in animals. However, there is little information about miRNA regulation function involved in gonadal development in fish. Our group previously identified sex-related miRNAs of Chinese tongue sole (Cynoglossus semilaevis) during sex determination and differentiation by small RNA sequencing. In the present study, we characterized ssa-mir-196a-4 and its expression in testis and verified its interaction with lgr8. miRNA ssa-mir-196a-4 precursor was predicted to have a typical hairpin structure and highly conserved among various fish species. Fluorescence in situ hybridization (FISH) of ssa-mir-196a-4 in the testis of Chinese tongue sole showed that it is mainly expressed in the cytoplasm of Sertoli cells. We determined that ssa-mir-196a-4 interacted with lgr8 by bioinformatics analysis using miRanda software. According to the dual-luciferase gene reporter assay, lgr8 is a direct target of ssa-mir-196a-4. Overexpression of ssa-mir-196a-4 in the cells of the testis cell line of Chinese tongue sole decreased the expression levels of lgr8 messenger RNA (mRNA) and protein by targeting its coding sequence (CDS) region. These results suggest that ssa-mir-196a-4 acts as a post-transcriptional regulator of lgr8 and plays an important role in developing testes of Chinese tongue sole.


Asunto(s)
Proteínas de Peces/genética , Peces/genética , MicroARNs , Receptores Acoplados a Proteínas G/genética , Testículo , Animales , China , Hibridación Fluorescente in Situ , Masculino , MicroARNs/genética , Testículo/crecimiento & desarrollo
19.
Theriogenology ; 182: 119-128, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151001

RESUMEN

Sexual size dimorphism (SSD), characterized by the body size difference in different sexes, has been commonly announced in various species included mammals, birds, reptiles, and fishes. The endocrine factors in the gonads has been regarded to be involved in SSD. Two oocyte secreted factors-growth differentiation factor 9 (gdf9) and bone morphogenetic factor 15 (bmp15) has been shown to be differentially expressed in the gonad of Chinese tongue sole (Cynoglossus semilaevis), a typical marine fish demonstrating female-biased SSD. To figure out their possible roles in fish SSD, gdf9 and bmp15 of C. semilaevis were firstly cloned. The subsequently phylogenetic and structural analysis revealed that gdf9 and bmp15 were clustered with other fish species and both contained TGF-beta domain in the C-terminal. Furthermore, the temporal and spatial expression by qRT-PCR showed that gdf9 and bmp15 displayed the highest expression level in the female gonad. Moreover, the highest levels of gdf9 and bmp15 transcripts were both detected in the 1.5-year-old female gonad. The in situ hybridization and immunofluorescence experiments revealed that their mRNAs and proteins were both located in the oocyte. Based on the methylome data and bisulfite sequencing PCR, the lowest DNA methylation levels for gdf9 was observed in the female gonad, mainly distributed in the upstream and genebody regions. As for bmp15 gene, the methylation level of females in the genebody region, especially the exon 1, was higher than that of males and pseudomale, while the methylation level of females in the downstream was the lowest. Finally, knock-down of gdf9 siRNA in C. semilaevis ovarian cells resulted in the down-regulation of alk4 and tgfbr1, and up-regulation of bmpr2, smad8, and bmp15. Taken together, the female-gonad-biased expression of gdf9 and bmp15 may be partly attributed to their upstream or genebody DNA methylation status. Gdf9 might be involved in reproduction and growth regulation of C. semilaevis by affecting Smad signaling pathway. Further exploration for these two ovarian factors would be helpful to better understand C. semilaevis SSD.


Asunto(s)
Proteína Morfogenética Ósea 15 , Lenguado , Factor 9 de Diferenciación de Crecimiento , Animales , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Femenino , Lenguado/genética , Lenguado/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Masculino , Filogenia , Regiones Promotoras Genéticas
20.
Front Cell Dev Biol ; 9: 743722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926443

RESUMEN

Sexual size dimorphism (SSD) is the difference in segments or body size between sexes prevalent in various species. Understanding the genetic architecture of SSD has remained a significant challenge owing to the complexity of growth mechanisms and the sexual influences among species. The Chinese tongue sole (Cynoglossus semilaevis), which exhibits a female-biased SSD and sex reversal from female to pseudomale, is an ideal model for exploring SSD mechanism at the molecular level. The present study aimed to integrate transcriptome and methylome analysis to unravel the genetic and epigenetic changes in female, male, and pseudomale C. semilaevis. The somatotropic and reproductive tissues (brain, liver, gonad, and muscle) transcriptomes were characterized by RNA-seq technology. Transcriptomic analysis unravelled numerous differentially expressed genes (DEGs) involved in cell growth and death-related pathways. The gonad and muscle methylomes were further employed for screening differentially methylated genes (DMGs). Relatively higher DNA methylation levels were observed in the male and pseudomale individuals. In detail, hypermethylation of the chromosome W was pronounced in the pseudomale group than in the female group. Furthermore, weighted gene co-expression network analysis showed that turquoise and brown modules positively and negatively correlated with the female-biased SSD, respectively. A combined analysis of the module genes and DMGs revealed the female-biased mRNA transcripts and hypomethylated levels in the upstream and downstream regions across the cell cycle-related genes. Moreover, the male and pseudomale-biased gene expression in the hippo signaling pathway were positively correlated with their hypermethylation levels in the gene body. These findings implied that the activation of the cell cycle and the inhibition of the hippo signaling pathway were implicated in C. semilaevis female-biased SSD. In addition, the dynamic expression pattern of the epigenetic regulatory factors, including dnmt1, dnmt3a, dnmt3b, and uhrf1, among the different sexes correspond with their distinct DNA methylation levels. Herein, we provide valuable clues for understanding female-biased SSD in C. semilaevis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA