Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Environ Manage ; 299: 113682, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34526277

RESUMEN

The treatment cost for Cl- removal by Friedel's salt precipitation depended significantly on utilization rate of the precipitant aluminate. In this study, effects of Ca/Al molar ratio, reaction time, temperature and Al/Cl molar ratio were investigated to maximize Al utilization rate for Cl- removal from flue gas desulfurization wastewater. Batch results showed that the maximum Al utilization rate of 55.8-60.3% was obtained at Ca/Al ratio of 3.00, reaction time of 90 min, temperature of 35 °C and Al/Cl ratio of 0.50 regardless of the initial Cl- concentration. The precipitate obtained at the highest Al utilization rate had the highest interlayer spacing, the best crystal integrity, and the strongest binding energy of the Al-OH bond. The optimized condition made ion exchange between Cl- and OH- easier, and obtained more stable Friedel's salt structure to adsorb Cl-. Pilot-scale results showed that maximizing Al utilization rate with low dosages of precipitants had insignificant effects on the removal of Mg2+, Ca2+ and sulfate compared to the strategy to maximize Cl-, but enhanced Al utilization rate from 38.2% to 56.4%. Economic analysis showed that enhancing Al utilization rate greatly reduced treatment cost of the Friedel's salt precipitation method by 30.5%, and made the two-stage desalination process more feasible and worth popularizing.


Asunto(s)
Cloruros , Aguas Residuales , Óxido de Aluminio , Cloruro de Calcio , Cloruros/análisis
2.
J Environ Manage ; 290: 112566, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33915350

RESUMEN

Mining and metal processing industries constitutes a major source of environmental pollution, albeit its huge impact on a nation's economic and industrial growth. The collaborative approach in waste management where wastes in one process/industry turns out to be a resource for another is extremely useful to sustain industries. Titanium dioxide pigment production industry operating via chloride process expels hazardous iron oxide waste byproduct rich in chloride content. The slow leaching of highly acidic and chloride rich effluents (2-5 wt.%) along with toxic heavy metals from iron oxide storage ponds in titanium industries pose serious threat to the human health and environment. The present paper describes the development of an innovative zero discharge chloride removal process via formation of layered double hydroxides (LDHs) from iron oxide waste byproduct, thereby enabling the end use applications of iron oxide. It is the first such study reported on the value addition of hazardous industrial residues via LDH formation. The developed co-precipitation process recorded maximum chloride removal efficiency in the range of 85-95%. The resultant precipitate i.e., the Friedel's salt was characterized by various techniques such as XRD, XRF and SEM-EDX and confirmed the effective removal of chlorides. The application potential of the process in real iron oxide wash waters with 95% removal efficiency and the possible reusability of precipitate utilizing the "memory effect" of LDHs were found to be highly promising. The study demonstrated the unique application potential of the process in chloride rich iron oxide wash waters unlike other industrial/domestic wastewaters, wherein other anionic species has a detrimental effect. The value added iron oxide can find application in steel industries and can mitigate the environmental and health concerns arising from the long term storage of hazardous iron oxide in mineral processing industries.


Asunto(s)
Cloruros , Residuos Peligrosos , Compuestos Férricos , Humanos , Hidróxidos , Residuos Industriales/análisis , Titanio
3.
Sci Total Environ ; 862: 160906, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521621

RESUMEN

As a high efficiency method for chloride removal, Friedel's salt precipitation (FSP) method has attracted much attention in zero liquid discharge (ZLD) of flue gas desulfurization (FGD) wastewater. This review provides comprehensive knowledge of FSP method for chloride removal through analysis of the evolution, reaction mechanisms and influential factors, and describes the recent research progress. FSP method is a cost-efficient technology to remove chloride from saline wastewater by adding lime and aluminate. Chloride ions react with the precipitants by adsorption or/and ion exchange to form Friedel's salt, which is affected by the reaction conditions including reaction time, temperature, interferential ions, etc. The effluent of this process can be reused as the makeup water of desulfurization tower, and the dechloridation precipitates can be reclaimed as adsorption materials and sludge conditioners. That can not only offset a fraction of the treatment cost, but also avoid secondary pollution, so ZLD of FGD wastewater can be achieved. This paper summarizes the deficiencies and potential improvement measures of FSP method. We believe this technology is a promising way to achieve ZLD of FGD wastewater and other wastewater containing chloride, and expect FSP method would become more mature and be widely applied in hypersaline wastewater treatment in the foreseeable future.


Asunto(s)
Cloruros , Aguas Residuales , Cloruro de Calcio , Óxido de Aluminio
4.
Front Microbiol ; 14: 1271286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901808

RESUMEN

Wastewater from processing crustacean shell features ultrahigh chloride content. Bioremediation of the wastewater is challenging due to the high chloride ion content, making it inhospitable for most microorganisms to survive and growth. In this study, mangrove wetland-derived fungi were first tested for their salt tolerance, and the highly tolerant isolates were cultured in shrimp processing wastewater and the chloride concentration was monitored. Notably, the filamentous fungal species Aspergillus piperis could remove over 70% of the chloride in the wastewater within 3 days, with the fastest biomass increase (2.01 times heavier) and chloride removal occurring between day one and two. The chloride ions were sequestered into the fungal cells. The genome of this fungal species contained Cl- conversion enzymes, which may have contributed to the ion removal. The fungal strain was found to be of low virulence in larval models and could serve as a starting point for further considerations in bioremediation of shell processing wastewater, promoting the development of green technology in the shell processing industry.

5.
Sci Total Environ ; 824: 153909, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35183638

RESUMEN

Large quantities of wastewaters containing high concentrations of Cl(-I) can be generated in several industries when chloride-containing materials and additive agents are employed. Because Cl(-I) is unavailable to microorganisms, physicochemical methods are generally used for the removal of Cl(-I); however, as the most stable form of chlorine under aqueous conditions, Cl(-I) in wastewaters is difficult to remove to achieve low residual concentrations through common physicochemical methods. This paper provides new insights into traditional precipitation, oxidation, ion exchange and physical separation methods, as well as newly developed approaches, for Cl(-I) removal from various industrial wastewaters through analysis of the mechanisms, applicable conditions, optimum parameters, and method advantages and disadvantages. Moreover, the developmental trends and potential improvements to these approaches are also presented. Currently, precipitation is the most common and efficient Cl(-I) removal method, for which ultraviolet (UV) light is regarded as an effective means of improvement. Additionally, advanced oxidation processes (AOPs), where Cl(-I) can be oxidized to generate Cl radicals, Cl2- radicals, Cl2 gas, etc., show great promise for Cl(-I) removal. This review provides a theoretical foundation for the effective treatment and for the secondary utilization of industrial wastewaters containing Cl(-I).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloruros/análisis , Cloro/análisis , Peróxido de Hidrógeno/análisis , Oxidación-Reducción , Rayos Ultravioleta , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
6.
Waste Manag ; 141: 27-34, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091317

RESUMEN

To recycle municipal solid waste incineration bottom ash as a cement raw material, it is important to reduce the Cl concentration in the ash. However, the reduction of chlorides by washing only has limited success due to the presence of insoluble Friedel's salt (FS) in the ash. Although some studies on the decomposition of FS and the application of advanced chloride removal methods to bottom ash have been reported, few studies have compared the effects of different removal methods. Moreover, due to the complex ash composition, it is also necessary to compare the effects on different ashes and pure FS. Therefore, in this study, we applied five advanced chloride removal methods to synthesized FS and two types of bottom ash (FS-High and FS-Low), and compared the effects. For both FS and bottom ash, all methods promoted chloride dissolution more than washing only. For FS, aging was the most effective method, with a Cl removal ratio of 73%. In contrast, for ash FS-High, aging increased the Cl removal ratio to 80% and decreased the Cl content to 2800 mg/kg. The FS-derived peak observed in an X-ray diffraction analysis disappeared following aging. For ash FS-Low, acid washing increased the Cl removal ratio to 64% and decreased the Cl content to 1800 mg/kg. The treatment with the highest removal ratio in each ash had the lowest pH. There was a significant correlation between pH and the Cl removal effect. The Cl remaining after the application of the methods was likely associated with Na.

7.
Environ Sci Pollut Res Int ; 29(23): 35284-35299, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35060056

RESUMEN

Anthropogenic activities can be the source of saline solid wastes that need to be treated to reduce their salt load to meet the purposes of reuse, valorization or storage. In this context, chloride remediation can be achieved using high-salt accumulating plants. However, there is very limited information on the comparative potential of different species in the same environment, and only scarce data concerning their efficiency as a function of growth stage. In order to rationalize these selection criteria, three macrophytes i.e., common reed (Phragmites australis), sea rush (Juncus maritimus), and cattail (Typha latifolia), were cultivated at two growth stages (6-months old and 1-year old) for 65 days in Cl- spiked substrates (from 0 up to 24 ‰ NaCl). The plants' survival and potential capacity for removal of Cl- from substrates and accumulation in shoots were investigated. For the three studied species, mature and juvenile plants display a high tolerance to salinity. However, mature specimens with higher shoot biomass and Cl- contents are capable of greater chloride removal than juvenile plants. The sole exception is P. australis which displays just the same phytoremediation potential for both mature and juvenile specimens. Moreover, P. australis has the lowest potential when compared with other species, being 1.5 and 3 times lower than for J. maritimus and T. latifolia. When considering the plant growth and the shoot biomass production, chloride removal rates from the substrate point that mature J. maritimus should preferentially be used to design an operational chloride remediation system. The results highlight the relevance of considering the growth stage of plants used for Cl- removal. HIGHLIGHTS: 1) Mature and juvenile specimens of J. maritimus, P. australis, and T. latifolia have high salinity tolerance in solid media spiked up to 24 ‰ NaCl. 2) Mature plants have generally better Cl- removal and phytoremediation performances than juvenile specimens. 3) J. maritimus is the most effective species for chloride phytoremediation with high survival and high Cl- sequestration in shoots. 4) T. latifolia has high Cl- removal in shoots and good remediation capacities but also shows sign of stress. 5) P. australis shows low Cl- sequestration and is a poor candidate for chloride remediation from substrate.


Asunto(s)
Typhaceae , Biodegradación Ambiental , Biomasa , Cloruros , Plantas , Poaceae/química , Salinidad , Cloruro de Sodio/química , Typhaceae/química
8.
Water Res ; 225: 119134, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182672

RESUMEN

The bismuth oxide (Bi2O3) based chloride (Cl-) removal method is one of the chemical precipitation methods possessing good selectivity and high removal efficiency of Cl- ions, but Bi2O3 often appears in the powder form, which is difficult to be recovered for regeneration. In this work, the combination of 3D printing technology and the Bi2O3 method was explored to construct the resin model including the Bi-precursors. In the optimum carbonization process at 400 °C for 30 min, the Bi3+ ions of the Bi-precursor were reduced into the metallic Bi0 nanoparticles, whose surfaces were covered by the thin Bi2O3 layers to form the heterostructured Bi0/Bi2O3 core/shell nanoparticles with an average size of 43 nm. These Bi0/Bi2O3 nanoparticles were tightly adhered to the internal and external surfaces of the hierarchical porous carbon model (Bi-PCM), which greatly facilitated their regeneration and ensured the stable Cl- removal performance. After five cycles of Cl- removal, the chloride removal efficiency over the multiple Bi-PCMs in the dark and pH 1 conditions maintained at about 26%, which then largely increased to 63.6% with UV light irradiation. The light-enhanced mechanism was related to the improved release rate of Bi3+ ions caused by photocorrosion and the Cl• radicals produced from the holes and the •OH and O2•- radicals, which quickly reacted with Bi2O3 to form BiOCl. The construction of Bi-PCMs by using 3D printing technology provides a very promising strategy for the removal of Cl- ions from wastewater.


Asunto(s)
Bismuto , Aguas Residuales , Cloruros , Carbono , Porosidad , Polvos , Halógenos , Impresión Tridimensional , Tecnología
9.
Artículo en Inglés | MEDLINE | ID: mdl-33596165

RESUMEN

Chloride reduction in crude palm oil (CPO) of greater than 80% was achieved with water washing conducted at 90°C. Inorganic chloride content in CPO was largely removed through washing, with no significant reduction in the organic chloride. Phosphorous content of CPO reduced by 20%, while trace elements such as calcium, magnesium and iron were also reduced in the washing operation. The 3-MCPDE formed in the refined, bleached and deodorised palm oil displayed (RBDPO) a linear relationship with the chloride level in washed CPO, which could be represented by the equation y = 0.91x, where y is 3-MCPDE and x represents the chloride in RBDPO refined from washed CPO. In plant scale trials using 5% water at 90°C, mild acidification of the wash water at 0.05% reduced chloride by average 76% in washed CPO. Utilising selected bleaching earths, controlled wash water temperature and wash water volume produced low chloride levels in RBDPO. Chloride content less than 1.4 mg kg-1 in plant RBDPO production was achieved, through physical refining of washed CPO containing less than 2 mg kg-1 chloride and would correspond to 3-MCPDE levels of 1.25 mg kg-1 in RBDPO. The 3-MCPDE reduced further to 1.1 mg kg-1 as the chloride level of washed CPO decreased below 1.8 mg kg-1. Chloride has been shown to facilitate the 3-MCPDE formation and its removal in lab scale washing study has yielded lower 3-MCPDE levels formed in RBDPO. In actual plant operations using washed CPO, 3-MCPDE levels below 1.25 mg kg-1 were achieved consistently in RBDPO.


Asunto(s)
Cloruros/química , Ésteres/química , Aceite de Palma/química , Petróleo/análisis , alfa-Clorhidrina/análogos & derivados , alfa-Clorhidrina/química , Estabilidad de Medicamentos , Manipulación de Alimentos , Calidad de los Alimentos , Humanos , Control de Calidad , Temperatura , Agua , alfa-Clorhidrina/análisis
10.
Artículo en Inglés | MEDLINE | ID: mdl-33801904

RESUMEN

Chlorine is a critical element with respect to the use of fossil fuel, recycling of industrial wastes, and water purification. Chlorine could form toxic chemical compounds, corrode pipe systems and boilers, and contaminate surface and ground waters. Calcium aluminate-layered double hydroxides are one of the most promising materials to remove chlorides due to the chemisorption mechanism, since the phases have positively charged interlayers. Many studies on the synthesis and the characterization of calcium aluminate-layered double hydroxides have been extensively conducted, whereas few studies have been conducted on the chloride removal characteristics of the phases. The state-of-the-art studies on the synthesis methods and the structural characteristics of CaAl-LDH phases, the underlying mechanism on the removal of chlorides, and the potential removal rate and the capacity in the present study were thoroughly reviewed.


Asunto(s)
Cloruros , Contaminantes Químicos del Agua , Adsorción , Compuestos de Aluminio , Compuestos de Calcio , Cloro , Hidróxidos
11.
J Hazard Mater ; 397: 122744, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32361139

RESUMEN

A two-stage desalination process was developed to achieve zero liquid discharge (ZLD) of flue gas desulfurization (FGD) wastewater by precipitating chloride as Friedel's salt. Influential factors for Friedel's salt precipitation, including dosage, reaction time, concentration of sulfate, were investigate by batch tests. Batch results showed that at calcium to aluminum molar ratio of 3.0, the optimal chloride removal and the highest crystallinity of Friedel's salt were obtained. Sulfate impeded Friedel's salt precipitation by competitive inhibition mechanism, and thus calcium sulfate removal was designed in advance of chloride removal. Batch results and long-term results of bench-scale experiments showed that magnesium and part of sulfate were effectively removed by lime addition in Stage I of the proposed process, and then the remaining sulfate and 48.1 % of chloride were precipitated as ettringite and Friedel's salt in Stage II. The effluent of the two-stage process was alkaline with low turbidity, and had considerable desulfurization capacity. Techno-economic evaluation showed that the two-stage process is technically feasible, economically viable and environmentally friendly technology for ZLD of FGD wastewater.

12.
Talanta ; 197: 509-516, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771969

RESUMEN

The study presented in this paper takes a comprehensive approach to the measurement of the COD of saline industrial wastewaters taking into account both their widely varying salinity levels and the substantial interference of chloride with the conventional method of COD measurement. To this end, three approaches for combating the chloride interference associated with the measurement of COD using the conventional method were considered. The dilution of saline samples prior to analysis yielded reasonably accurate COD results as long as the COD after dilution was 40 mg L-1 or above. In the second approach, the previously reported modifications of the standard method were stretched to their practical limits (increasing HgSO4 to 130 g L-1 and decreasing K2Cr2O7 to 1.022 g L-1) accompanied by prior addition of HgSO4:Cl- at a ratio of 20:1 combined with chloride interference error estimation. This brought about an increase in chloride interference threshold of the standard method to 42.5 g L-1, which is considerably higher than previous reports. Since some raw or treated saline industrial wastewaters have a combination of chloride and COD concentration which makes the first two approaches inapplicable, the approach of chloride removal from the sample via a modification of DIN 38409-H41-2 and subsequent measurement of COD using a slight variation of the closed reflux standard method was also considered. Fairly accurate COD determinations for samples with chloride concentrations up to 148.6 and 182 g L-1 for COD contents of 50 and 900 mg L-1, respectively were achieved. However, excessive precipitation of the desalination reaction products made the method inapplicable to samples with chloride concentrations above 182 g L-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA