Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Med Res Rev ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704826

RESUMEN

The development of peptide drugs has made tremendous progress in the past few decades because of the advancements in modification chemistry and analytical technologies. The novel-designed peptide drugs have been modified through various biochemical methods with improved diagnostic, therapeutic, and drug-delivery strategies. Researchers found it a helping hand to overcome the inherent limitations of peptides and bring continued advancements in their applications. Furthermore, the emergence of peptide-drug conjugates (PDCs)-utilizes target-oriented peptide moieties as a vehicle for cytotoxic payloads via conjugation with cleavable chemical agents, resulting in the key foundation of the new era of targeted peptide drugs. This review summarizes the various classifications of peptide drugs, suitable chemical modification strategies to improve the ADME (adsorption, distribution, metabolism, and excretion) features of peptide drugs, and recent (2015-early 2024) progress/achievements in peptide-based drug delivery systems as well as their fruitful implication in preclinical and clinical studies. Furthermore, we also summarized the brief description of other types of PDCs, including peptide-MOF conjugates and peptide-UCNP conjugates. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development and progress toward a bright future of novel peptide drugs.

2.
Chemistry ; 29(3): e202203069, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36250260

RESUMEN

Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker. So far, only one member of this class has been developed, a compound that requires a high synthetic effort, mainly to fulfill the multilayered demands on its chemical structure. To tackle this limitation, we developed a dioxolane-fused cleavable TCO linker (dcTCO) that can be prepared in only five steps by applying an oxidative desymmetrization to achieve diastereoselective introduction of the required functionalities. Based on investigation of the structure, reaction kinetics, stability, and hydrophilicity of dcTCO, we demonstrate its bioorthogonal application in the design of a caged prodrug that can be activated by in-situ Tz-triggered cleavage to achieve a remarkable >1000-fold increase in cytotoxicity.


Asunto(s)
Ciclooctanos , Estrés Oxidativo , Oxidación-Reducción , Cinética , Ciclooctanos/química , Ciclooctanos/uso terapéutico
3.
Chemistry ; 29(45): e202300755, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37224460

RESUMEN

An increase in the click-to-release reaction rate between cleavable trans-cyclooctenes (TCO) and tetrazines would be beneficial for drug delivery applications. In this work, we have developed a short and stereoselective synthesis route towards highly reactive sTCOs that serve as cleavable linkers, affording quantitative tetrazine-triggered payload release. In addition, the fivefold more reactive sTCO exhibited the same in vivo stability as current TCO linkers when used as antibody linkers in circulation in mice.


Asunto(s)
Ciclooctanos , Sistemas de Liberación de Medicamentos , Animales , Ratones , Ciclooctanos/química
4.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982208

RESUMEN

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Inmunoconjugados/farmacología , Inmunoglobulina G , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Doxorrubicina
5.
Bioorg Med Chem ; 73: 117040, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202066

RESUMEN

BACKGROUND: Previously, we have exploited bacterial adhesins-derived fibronectin-binding peptides (FnBPs) for targeting mechanically altered fibronectin (Fn) fibrils within the cancer-associated extra-cellular matrix (ECM). However, despite the ability of FnBP probes to visualize pathological lesions, when labeled with metallic radionuclides and administered for targeted imaging, they exhibit high and persistent retention of radioactivity within the kidneys. Intending to overcome this issue towards a future translation of FnBPs to the clinic, the goal of the present study was to reduce the renal retention of 111In-labelled FnBPs employing dual renal brush border membrane (BBM) enzyme-sensitive Met-Val-Lys-based linkers, enabling a rapid washout of radioactivity from the kidneys. METHODS: Three maleimide-activated NOTA-conjugated brush border-enzyme cleavable linkers equipped with either single or dual consecutive MVK-based cleavable moieties were designed and synthesized. Their respective NOTA-MVK-based FnBPA5.1 conjugates were obtained by means of maleimide-thiol mediated conjugation at the N-terminus of the Fn-binding sequence, radiolabeled with indium-111, and further evaluated in vitro and in vivo in comparison to the control [111In]In-FnBPA5.1. RESULTS: The linker equipped with two MVK sites displayed a two-fold more effective cleavage rate than the single MVK featuring linker in vitro, as revealed by the quantification of the released Met-containing radiometabolites. SPECT/CT imaging and biodistribution studies of the series of FnBPA5.1 radioconjugates performed at 24 h post-injection (p.i.) confirmed the in vitro results, indicating that the renal retention of 111In-labelled FnBPs can be significantly lowered through the interposition of a single MVK-based sequence between the Fn-targeting moiety and the chelating unit (52.75 ± 9.79 vs 92.88 ± 4.85 % iA/g, P < 0.001), and even further reduced by the addition of a second one (down to 34.82 ± 6.04, P < 0.001), with minor influence on the biodistribution in other organs, such as tumors. CONCLUSIONS: In summary, we report here promising 111In-labelled FnBP radiotracers equipped with dual MVK-based cleavable linkers leading to a more effective reduction of renal retention and improved tumor-to-kidney ratios compared to the single MVK-featuring derivative. Our dual MVK strategy is a crucial step towards the clinical translation of mechano-sensory FnBPs and might as well be adopted for other radiopharmaceuticals suffering from persistent renal retention of radioactivity.


Asunto(s)
Neoplasias , Radiofármacos , Adhesinas Bacterianas/metabolismo , Línea Celular Tumoral , Fibronectinas/metabolismo , Humanos , Riñón/metabolismo , Maleimidas/metabolismo , Neoplasias/metabolismo , Péptidos/metabolismo , Radiofármacos/metabolismo , Compuestos de Sulfhidrilo , Distribución Tisular
6.
Chemistry ; 27(9): 3166-3176, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33169429

RESUMEN

A glucose responsive insulin (GRI) that responds to changes in blood glucose concentrations has remained an elusive goal. Here we describe the development of glucose cleavable linkers based on hydrazone and thiazolidine structures. We developed linkers with low levels of spontaneous hydrolysis but increased level of hydrolysis with rising concentrations of glucose, which demonstrated their glucose responsiveness in vitro. Lipidated hydrazones and thiazolidines were conjugated to the LysB29 side-chain of HI by pH-controlled acylations providing GRIs with glucose responsiveness confirmed in vitro for thiazolidines. Clamp studies showed increased glucose infusion at hyperglycemic conditions for one GRI indicative of a true glucose response. The glucose responsive cleavable linker in these GRIs allow changes in glucose levels to drive the release of active insulin from a circulating depot. We have demonstrated an unprecedented, chemically responsive linker concept for biopharmaceuticals.


Asunto(s)
Aldehídos/química , Glucemia/metabolismo , Insulina/química , Insulina/metabolismo , Acilación , Animales , Glucemia/efectos de los fármacos , Células CHO , Cricetulus , Humanos , Hidrazonas/química , Insulina/farmacología , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Tiazolidinas/química
7.
Angew Chem Int Ed Engl ; 60(49): 25914-25921, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741376

RESUMEN

Antibody-drug conjugates (ADCs) are a new class of therapeutics that combine the lethality of potent cytotoxic drugs with the targeting ability of antibodies to selectively deliver drugs to cancer cells. In this study we show for the first time the synthesis of a reactive-oxygen-species (ROS)-responsive ADC (VL-DAB31-SN-38) that is highly selective and cytotoxic to B-cell lymphoma (CLBL-1 cell line, IC50 value of 54.1 nM). The synthesis of this ADC was possible due to the discovery that diazaborines (DABs) are a very effective ROS-responsive unit that are also very stable in buffer and in plasma. DFT calculations performed on this system revealed a favorable energetic profile (ΔGR=-74.3 kcal mol-1 ) similar to the oxidation mechanism of aromatic boronic acids. DABs' very fast formation rate and modularity enabled the construction of different ROS-responsive linkers featuring self-immolative modules, bioorthogonal functions, and bioconjugation handles. These structures were used in the site-selective functionalization of a VL antibody domain and in the construction of the homogeneous ADC.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Inmunoconjugados/farmacología , Linfoma de Células B/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Compuestos de Boro/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Estructura Molecular
8.
Molecules ; 25(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854201

RESUMEN

High kidney uptake is a common feature of peptide-based radiopharmaceuticals, leading to reduced detection sensitivity for lesions adjacent to kidneys and lower maximum tolerated therapeutic dose. In this study, we evaluated if the Met-Val-Lys (MVK) linker could be used to lower kidney uptake of 68Ga-labeled DOTA-conjugated peptides and peptidomimetics. A model compound, [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH (AmBz: aminomethylbenzoyl), and its derivative, [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH, coupled with the PSMA (prostate-specific membrane antigen)-targeting motif of the previously reported HTK01166 were synthesized and evaluated to determine if they could be recognized and cleaved by the renal brush border enzymes. Additionally, positron emission tomography (PET) imaging, ex vivo biodistribution and in vivo stability studies were conducted in mice to evaluate their pharmacokinetics. [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH was effectively cleaved specifically by neutral endopeptidase (NEP) of renal brush border enzymes at the Met-Val amide bond, and the radio-metabolite [68Ga]Ga-DOTA-AmBz-Met-OH was rapidly excreted via the renal pathway with minimal kidney retention. [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH retained its PSMA-targeting capability and was also cleaved by NEP, although less effectively when compared to [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH. The kidney uptake of [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH was 30% less compared to that of [68Ga]Ga-HTK01166. Our data demonstrated that derivatives of [68Ga]Ga-DOTA-AmBz-MVK-OH can be cleaved specifically by NEP, and therefore, MVK can be a promising cleavable linker for use to reduce kidney uptake of radiolabeled DOTA-conjugated peptides and peptidomimetics.


Asunto(s)
Radioisótopos de Galio , Riñón , Péptidos , Peptidomiméticos , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Línea Celular Tumoral , Radioisótopos de Galio/química , Radioisótopos de Galio/farmacocinética , Radioisótopos de Galio/farmacología , Humanos , Riñón/diagnóstico por imagen , Riñón/metabolismo , Ratones , Neprilisina/química , Neprilisina/metabolismo , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacocinética , Péptidos/farmacología , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Peptidomiméticos/farmacocinética , Peptidomiméticos/farmacología , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/farmacología
9.
Angew Chem Int Ed Engl ; 59(28): 11566-11572, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227406

RESUMEN

Capture and release of peptides is often a critical operation in the pathway to discovering materials with novel functions. However, the best methods for efficient capture impede facile release. To overcome this challenge, we report linkers based on secondary amino alcohols for the release of peptides after capture. These amino alcohols are based on serine (seramox) or isoserine (isoseramox) and can be incorporated into peptides during solid-phase peptide synthesis through reductive amination. Both linkers are quantitatively cleaved within minutes under NaIO4 treatment. Cleavage of isoseramox produced a native peptide N-terminus. This linker also showed broad substrate compatibility; incorporation into a synthetic peptide library resulted in the identification of all sequences by nanoLC-MS/MS. The linkers are cell compatible; a cell-penetrating peptide that contained this linker was efficiently captured and identified after uptake into cells. These findings suggest that such secondary amino alcohol based linkers might be suitable tools for peptide-discovery platforms.


Asunto(s)
Amino Alcoholes/química , Biblioteca de Péptidos , Péptidos/síntesis química , Conformación Proteica
10.
Angew Chem Int Ed Engl ; 58(19): 6366-6370, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30856679

RESUMEN

A bioorthogonal approach is explored to release the content of nanoparticles on demand. Exploiting our recently described click-and-release technology, we developed a new generation of cleavable micelles able to disassemble through a sequential enzymatic and bioorthogonal activation process. Proof-of-concept experiments showed that this new approach could be successfully used to deliver the substances encapsulated into micelles in living cells as well as in mice by two complementary targeted strategies.


Asunto(s)
Micelas , Preparaciones Farmacéuticas/metabolismo , Alquinos/química , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Química Clic , Ciclooctanos/química , Liberación de Fármacos , Glucurónidos/química , Humanos , Cinética , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Preparaciones Farmacéuticas/química , Tetrazoles/química , Trasplante Heterólogo
11.
Bioorg Med Chem Lett ; 24(4): 1144-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24461291

RESUMEN

A design for the selective release of drug molecules in the liver was tested, involving the attachment of a representative active agent by an ester linkage to various 2-substituted 5-aminovaleric acid carbamates. The anticipated pathway of carboxylesterase-1-mediated carbamate cleavage followed by lactamization and drug release was frustrated by unexpectedly high sensitivity of the ester linkage toward hydrolysis by carboxylesterase-2 and other microsomal components.


Asunto(s)
Aminoácidos Neutros/farmacología , Carbamatos/farmacología , Carboxilesterasa/antagonistas & inhibidores , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Diseño de Fármacos , Hígado/efectos de los fármacos , Aminoácidos Neutros/síntesis química , Aminoácidos Neutros/química , Carbamatos/síntesis química , Carbamatos/química , Carboxilesterasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Hígado/enzimología , Estructura Molecular , Relación Estructura-Actividad
12.
Angew Chem Int Ed Engl ; 53(49): 13390-4, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25348595

RESUMEN

Bioorthogonal cleavable linkers are attractive building blocks for compounds that can be manipulated to study biological and cellular processes. Sodium dithionite sensitive azobenzene-containing (Abc) peptides were applied for the temporary stabilization of recombinant MHC complexes, which can then be employed to generate libraries of MHC tetramers after exchange with a novel epitope. This technology represents an important tool for high-throughput studies of disease-specific T cell responses.


Asunto(s)
Compuestos Azo/química , Antígenos HLA-A/química , Péptidos/química , Secuencia de Aminoácidos , Compuestos Azo/inmunología , Ditionita/química , Epítopos/química , Epítopos/inmunología , Antígenos HLA-A/inmunología , Humanos , Ligandos , Modelos Moleculares , Péptidos/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología
13.
Curr Med Chem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39289930

RESUMEN

Drug conjugates have emerged as a pivotal research focus in the field of targeted cancer therapy. They represent a widely explored prodrug strategy that significantly enhances the therapeutic index of drugs while minimizing side effects. The stability and selective cleavage of the linker within drug conjugates are critical for the therapeutic efficacy and targeted treatment achieved by these conjugates. In this review, we have categorized the linkers based on their cleavage mode and summarized the chemical properties, advantages, and limitations of various types of cleavable linkers. Particularly, examples have been provided to illustrate their specific potential for development.

14.
Eur J Med Chem ; 277: 116767, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146832

RESUMEN

Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. The upregulation of the bombesin receptor 2 (BB2) in several malignancies and the advantages offered by peptide drug conjugates over antibody drug conjugates in terms of production and tumour targeting motivated us to synthesise and test bombesin conjugates armed with the tubulin binder monomethyl auristatin E. The widely used Val-Cit-PABC was initially included as cathepsin cleavable self-immolative linker for the release of the free drug. However, the poor stability of the Val-Cit-conjugates in mouse plasma encouraged us to consider the optimised alternatives Glu-Val-Cit-PABC and Glu-Gly-Cit-PABC. Conjugate BN-EVcM1, featuring Glu-Val-Cit-PABC, combined suitable stability (t(½) in mouse and human plasma: 8.4 h and 4.6 h, respectively), antiproliferative activity in vitro (IC50 = 29.6 nM on the human prostate cancer cell line PC-3) and the full release of the free payload within 24 h. Three conjugates, namely BN-EGcM1, BN-EVcM1 and BN-EVcM2, improved the accumulation of MMAE in PC-3 human prostate cancer xenograft mice models, compared to the administration of the free drug. Among them, BN-EVcM1 also stood out for the significantly extended survival of mice in in vivo acute efficacy studies and for the significant inhibition of the growth of a PC-3 tumour in mice in both acute and chronic efficacy studies.


Asunto(s)
Antineoplásicos , Bombesina , Proliferación Celular , Oligopéptidos , Humanos , Animales , Bombesina/química , Bombesina/farmacología , Ratones , Oligopéptidos/química , Oligopéptidos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Masculino , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Ratones Desnudos , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Estructura Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología
15.
J Control Release ; 372: 176-193, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880331

RESUMEN

KRAS-mutant cancers, due to their protein targeting complexity, present significant therapeutic hurdles. The identification of the macropinocytic phenotype in these cancers has emerged as a promising alternative therapeutic target. Our study introduces MPD1, an macropinocytosis-targeting peptide-drug conjugates (PDC), which is developed to treat KRAS mutant cancers. This PDC is specifically designed to trigger a positive feedback loop through its caspase-3 cleavable characteristic. However, we observe that this loop is hindered by DNA-PK mediated DNA damage repair processes in cancer cells. To counter this impediment, we employ AZD7648, a DNA-PK inhibitor. Interestingly, the combined treatment of MPD1 and AZD7648 resulted in a 100% complete response rate in KRAS-mutant xenograft model. We focus on the synergic mechanism of it. We discover that AZD7648 specifically enhances macropinocytosis in KRAS-mutant cancer cells. Further analysis uncovers a significant correlation between the increase in macropinocytosis and PI3K signaling, driven by AMPK pathways. Also, AZD7648 reinforces the positive feedback loop, leading to escalated apoptosis and enhanced payload accumulation within tumors. AZD7648 possesses broad applications in augmenting nano-sized drug delivery and preventing DNA repair resistance. The promising efficacy and evident synergy underscore the potential of combining MPD1 with AZD7648 as a strategy for treating KRAS-mutant cancers.


Asunto(s)
Péptidos , Pinocitosis , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas p21(ras) , Pinocitosis/efectos de los fármacos , Humanos , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Péptidos/farmacología , Péptidos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Mutación , Ratones Desnudos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Femenino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Chembiochem ; 14(12): 1410-4, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23861326

RESUMEN

Putting a number on it: Cleavable linkers are widely utilized in proteomics applications. In particular, the azobenzene-based linker cleaves under mild conditions that are mass-spectrometry-compatible. Here, we adapt this linker for quantitative proteomic applications by incorporating an isotopic label. These light- and heavy-tagged linkers enable the identification and quantitation of labeled peptides from multiple proteomes.


Asunto(s)
Compuestos Azo/química , Proteómica , Química Clic , Reactivos de Enlaces Cruzados/química , Células HEK293 , Humanos , Indicadores y Reactivos/química , Marcaje Isotópico , Estructura Molecular , Péptidos/química
17.
Bioorg Chem ; 49: 40-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23886697

RESUMEN

We report herein the design and synthesis of several representative examples of novel mutual prodrugs containing nine distinct types of self-immolative drug-releasable disulfide linkers with urethane, ester, carbonate, or imide linkages between the linker and any two amine/amide/urea (primary or secondary) or carboxyl or hydroxyl (including phenolic)-containing drugs. We also report drug release profiles of a few representative mutual prodrugs in biological fluids such as simulated gastric fluid and human plasma. We also propose plausible mechanisms of drug release from these mutual prodrugs. We have also conducted a few mechanistic studies based on suggested sulfhydryl-assisted cleavage of mutual prodrugs and characterized a few important metabolites to give support to the proposed mechanism of drug release from the reported mutual prodrugs.


Asunto(s)
Líquidos Corporales/metabolismo , Disulfuros/metabolismo , Profármacos/química , Profármacos/metabolismo , Líquidos Corporales/química , Disulfuros/química , Diseño de Fármacos , Humanos , Estructura Molecular , Profármacos/síntesis química
18.
Angew Chem Int Ed Engl ; 52(40): 10593-7, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23960025

RESUMEN

A proteomics method to pull down secondary drug targets from live cells is described. The drug of interest is modified with trans-cyclooctene (TCO) and incubated with live cells. Upon cell lysis, the modified drug bound to the protein is pulled down using magnetic beads decorated with a cleavable tetrazine-modified linker. Samples are then run on an SDS-PAGE gel and isolated bands are submitted for mass spectrometry analysis to identify drug targets.


Asunto(s)
Terapia Molecular Dirigida/métodos , Proteómica/métodos , Humanos
19.
Angew Chem Int Ed Engl ; 52(51): 13538-43, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24288142

RESUMEN

pH-Cleavable cell-laden microgels with excellent long-term viabilities were fabricated by combining bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) and droplet-based microfluidics. Poly(ethylene glycol)dicyclooctyne and dendritic poly(glycerol azide) served as bioinert hydrogel precursors. Azide conjugation was performed using different substituted acid-labile benzacetal linkers that allowed precise control of the microgel degradation kinetics in the interesting pH range between 4.5 and 7.4. By this means, a pH-controlled release of the encapsulated cells was achieved upon demand with no effect on cell viability and spreading. As a result, the microgel particles can be used for temporary cell encapsulation, allowing the cells to be studied and manipulated during the encapsulation and then be isolated and harvested by decomposition of the microgel scaffolds.


Asunto(s)
Supervivencia Celular/fisiología , Microfluídica/métodos , Polietilenglicoles/química , Química Clic , Microscopía Confocal
20.
Cells ; 12(18)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759475

RESUMEN

The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.


Asunto(s)
Sistema Nervioso Central , Endosomas , Hígado , Músculos , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA